Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion

Zed section shape

Results Summary

Summary 
Design Check
Parameter
Utilisation
Status
Shear
Vn = 7183.25 force_pound
0.67
🟢
Flexural Moment
Mn = 6243.10 foot * force_pound
0.67
🟢

1. Properties

1.1 Material



fy
:33.00 ksi



G
:80.00 GPa



E
:200.00 GPa



u
:0.30


1.2 Geometry



Section
:Z4.0x2.25GA16



L
:5.00 ft


4.00 in
2.25 in
0.63 in
0.06 in


A
:0.5524590429849418


Advanced properties for analysis


1.46 in^4
0.72 in^4
0.03 in
2.22 in
2.00 in
0.73 in^3
24.10 in^3
1.62 in
1.14 in
0.03 in
2.00 in
-0.00 in
0.00 in
0.00 in^4
1.81 in^6
0.70 in^3
0.70 in^3


2. Design Actions



Vu
:3,000.0 lbf



Mu
:1,500.0 lbf ft



MA
:300.0 lbf ft



MB
:250.0 lbf ft

Note,

and

are the flexural moments and the end of the unbraced length of the purlin/girt.

3. Design Checks

3.1 Flexural Strength

The nominal flexural strength [resistance],

, for yielding and global (lateral-torsional) buckling considering capacity up to first yield shall be calculated in accordance with:

Mne=SfFnMy    (Eq. F2.11)M_{ne}=S_fF_n\le M_y \space \space \space \space (Eq. \space F2.1-1)
Where:
  1. 
    
    : Nominal flexural strength [resistance] for yielding and global buckling.
  2. 
    
    : Elastic section modulus of full unreduced section relative to extreme compression fiber
  1. 
    
    : Flexural Stress
  1. 
    
    
  1. 
    
    : Elastic section modulus of full unreduced cross-section relative to extreme fiber in first yielding.
  1. 
    
    : Yield Stress
  1. 
    
    : Critical elastic lateral-torsional buckling stress



σe,x
:209.91 ksi







M1
:250.00 ft lbf



M2
:300.00 ft lbf



CTF
:0.27







Fcre
:440.83 ksi




Section. F2.1.1 to 5


Fn
:33.00 ksi





Eq. F2.1-3 to 5


Sfy
:0.70 in^3




My
:1,729.03 lbf ft




Eq. F2.1-2


Mne
:1,729.03 lbf ft




Eq. F2.1-1


Flexural utilization
:0.87



Flexural check
:🟢






3.2 Shear Strength

The nominal shear strength [resistance],

, of flexural members without holes in the web shall be calculated in accordance with:

Vn={Vyfor λv0.8150.815VcrVyfor 0.815<λv1.227Vcrfor λv>1.227V_n =\begin{cases} V_y & \text{for } \lambda_v \leq 0.815 \\ 0.815 \sqrt{V_{cr} V_y} & \text{for } 0.815 < \lambda_v \leq 1.227 \\ V_{cr} & \text{for } \lambda_v > 1.227\end{cases}
Where:
  1. 
    
    
  2. 
    
    : Yield shear for of cross-section


Vy
:4,290.96 lbf




Eq. G2.1-5


λv
:0.72




Eq. G2.1-4


Vn
:4,290.96 lbf




Eq. G2.1-1 to 2


Shear utilization
:0.70



Shear check
:🟢