Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
EM Wave Propagation Calculator
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Concrete Rectangular Beam Calculator to ACI 318-19 (IMP)'s banner

Concrete Rectangular Beam Calculator to ACI 318-19 (IMP)

Verified by the CalcTree engineering team on June 27, 2024

This calculator performs the analysis and design of a reinforced concrete beam. It takes applied axial, shear and moments for several load types and checks all ULS and SLS load combinations to identify the critical design loads. It then checks the design loads against the moment and shear capacities, deflection limits and also checks the minimum depth, cover and reinforcement required. This calculator uses imperial units.
All calculations are performed in accordance with ACI 318-19 and ASCE7-22.

Code Calculation

Materials

Concrete


f'c
:{"mathjs":"Unit","value":4000.0000000000005,"unit":"psi","fixPrefix":false}



Ec
:3604996.5325919534

Reinforcement


fy
:{"mathjs":"Unit","value":60000.00000000001,"unit":"psi","fixPrefix":false}



Es
:{"mathjs":"Unit","value":29000000,"unit":"psi","fixPrefix":false}



n
:8 psi

Where:
  1. 
    
    is the specified compressive strength of concrete in psi
  1. 
    
    is the specified strength for non-prestressed reinforcement in psi
  1. 
    
    
    
    f'c
    :{"mathjs":"Unit","value":4000.0000000000005,"unit":"psi","fixPrefix":false}
    (19.2.2.1.b) is the Modulus of Elasticity for the concrete
  1. 
    
    is the Modulus of Elasticity for the reinforcement in psi.
  1. 
    
    is the modular factor, expressed as
    
    
    
    n
    :8.0 psi


Cross Section

Loads

Elastic Deflections

Flexural Strength

The flexural strength of the beam is calculated according to the standard literature for prismatic and simple reinforced beams. The

factor of 0.90 corresponds to the established in the ACI318-19; it can be changed according to the necessity of the user.

Mn =ρbd2fy(10.59ρfyfc)M_n\ =\rho bd^2f_y(1-0.59\rho \frac{f_y}{f'_c})


φf
:0.9



Mn, Bot
:242.53681730479084



φMn, Bot
:218.2831355743119



Mn,Top
:24.0750032188715



φMn,Top
:21.66750289698435


Shear strength

The

factor of 0.75 corresponds to the established in the ACI318-19; it can be changed according to the necessity of the user.
22.5.1.1
Nominal one-way shear strength at a section

Vn =Vc + VsV_n\ = V_c\ +\ V_s


φs
:0.75


(22.5.1.1)


Vn1
:49.852389621235396



Vn2
:49.852389621235396



φVn,1
:37.38929221592655



φVn,2
:37.38929221592655


Notice that two Shear Strengths are calculated in each section, each corresponding to the different spacings used in the beam.

Concrete Ultimate Design Shear



Vc1
:13.922724616984



Vc2
:13.922724616984

Vc shall not be taken greater than:

Vc, max= 5λfcbwdV_{c,\ max}=\ 5\lambda\sqrt{f'_c}b_wd
(22.5.5.1.1)


Vc,max+
:96.0146554568624



Vc,max-
:97.1214526379213

For nonprestressed members, Vc shall be calculated by Table 22.5.5.1:
A complete revision for each load combination was made for the following calculation. The final value is taken as the minimum calculated value in the table below. Finally, the

condition can be checked in the code revision.
Table 22.5.5.1 - ACI 318-19



Vc_22.5.5.1-1
:13.922724616984



Vc_22.5.5.1-2
:13.922724616984


1.4D
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+1.6L+0.5Lr
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+1.6L+0.5S
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+1.6L+0.5R
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.6Lr+1.0L
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.6S+1.0L
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.6R+1.0L
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.6Lr+0.5W
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.6S+0.5W
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.6R+0.5W
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.0W+ 1.0L+0.5Lr
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.0W+ 1.0L+0.5S
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.0W+ 1.0L+0.5R
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
1.2D+ 1.0E+ 1.0L + 0.2S
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
0.9D+ 1.0W
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips
0.9D+ 1.0E
0.00 kips
38.41 kips
38.85 kips
30.62 kips
13.92 kips
24.33 kips
11.02 kips

Transverse Reinforcement Ultimate Design Shear


Vs=AvfydsV_s=\frac{A_vf_yd}{s}
(22.5.8.5.3)


Vs1
:35.9296650042514



Vs2
:35.9296650042514



Effective Deflection

Beam Properties

Geometry

Reinforcement

Design Check

In the following tables, the "Check" condition corresponds to a failure of accomplishment in the checked state.

Minimum Depth and Cover

Strength

Max/Min


1.2D+1.6L+0.5Lr
0.79 kips
10.70 kips-ft
0.49
N/A
0.02
0.02
0.04
OK
1.2D+1.6L+0.5Lr
0.79 kips
10.70 kips-ft
0.49
N/A
0.02
0.02
0.04
OK
0.9D+ 1.0W
0.14 kips
1.01 kips-ft
0.05
N/A
0
0
0.01
OK
0.9D+ 1.0W
0.14 kips
1.01 kips-ft
0.05
N/A
0
0
0.01
OK

Ultimate Combinations

Minimum Reinforcement

Deflection Checks

The following deflections and deflection limits were calculated according to table 24.2.2 of ACI 318-19. The deflection limit can be changed in the table below according to the actual case for the current calculation.
Table 24.2.2 - ACI 318-19


1.50 in
1.00 in
Check
4.10 in
0.75 in
Check
Where "Check" means the beam isn't accomplishing the code requirements.

Check out our library of engineering tools here!