Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Angular Velocity Calculator's banner
🎡

Angular Velocity Calculator

This page provides insight into determining the angular velocity of a body and provides a function to help you calculate it using linear velocity and the radius.

Calculation

Inputs



v
:15 m / s



:50.00 rad



f
:5.00 Hz



r
:0.15 m



dt
:30.00 s


Outputs



ω (eqn 1)
:100 Hz


ωequation 1=vr\omega_{equation\ 1} = \frac {v}{r}


ω (eqn 2)
:0.27 Hz


ωequation 2=dθdt\omega_{equation\ 2}= \frac {d\theta}{dt}


ω (eqn 3)
:31.42 Hz


ωequation 3=2πf\omega_{equation\ 3}=2 \pi f


Untitled
:6.28 rad



Explanation

Angular velocity measures the rate of change of an object's angular position over time. It is a vector quantity usually expressed in radians per second (rad/s).
Angular velocity (ω) is the speed at which an object rotates around a fixed axis. The magnitude of angular velocity represents the speed of rotation, and the direction of the angular velocity vector indicates the axis of rotation.
The equations for angular velocity are as follows:

ωequation 1=vr\omega_{equation\ 1}= \frac {v}{r}

ωequation 2=dθdt\omega_{equation\ 2}= \frac {d\theta}{dt}

ωequation 3=2πf\omega_{equation\ 3}=2 \pi f

Here are the variables for the equation

  1. ω = angular velocity.
  1. dθ = change in angular position.
  2. dt = change in time.
  3. f = frequency, in revolutions.
  1. r = radius of the body.
  1. v = linear Velocity.
This equation is useful for algebraic manipulation involving derivatives and integrals of angular velocity (i.e. Angular Acceleration, Angular Position).
Figure 1: Diagram To Denote the Variables used for calculating Angular Velocity


Related Resources

If you liked this, check out our other articles and resources!
  1. Check out our full calculation template library
  2. More physics calculators and explanations
  1. Elastic section modulus
  2. Force Due To Acceleration
  1. Impulse and Momentum Calculator
  1. Work calculator