Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Square Shaft Torsion's banner
/custom-emojis/emojis/calculator.png

Square Shaft Torsion

This calculator calculates the maximum allowable torsion for a square shaft. This is done with the equation below.

T=2×τmaxH39T = \frac{2\times \tau_{max}H^3}{9}

The following are the variables for the equations...

  1. T = the torsion, twisting torque or tension. (Nm, lb f ft).
  1. τ (max) = maximum shear stress (Pa).
  1. H = the height of the shaft.
Figure 1: Diagram of a Square Shaft to Calculate The Torsion


Square Shaft Torsion Calculator

Inputs



Max shear stress, τ (max)
:40.00Pa



Height, H
:1.50m


Output



Torque, T
:30.00nm


T=2×τmaxH39T = \frac{2\times \tau_{max}H^3}{9}

Related Resources

If you liked this, check out our other articles and resources!
  1. Check out our full calculation template library
  2. More physics calculators and explanations
  3. Beam analysis tool
  4. Elastic section modulus
  5. Hooke's Law
  6. Maximum allowable torsion for shafts with varying cross sections
  7. Moment of Inertia Calculators
  8. Radius of Gyration In Structural Engineering
  9. Slenderness ratio calculator