Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Steel Section Designer to EC3's banner
/custom-emojis/emojis/steel-beam.png

Steel Section Designer to EC3

This calculator computes section capacities and utilisation factors of IPE and HE steel sections. It considers axial compression or tension, bending, and shear effects on the section.
All calculations are performed in accordance with EN 1993-1-1:2005 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. This code is typically referred to as "EC3" or "Eurocode 3".




Calculation

List of Inputs that used in this calculator


Section = IPE or HE sections to be defined by the user\footnotesize{\text{Section = IPE\ or\ HE\ sections\ to\ be\ defined\ by\ the\ user}}

Production Type=Welded or Rolled\footnotesize{Production\ Type= \text{Welded\ or\ Rolled}}

Steel Grade=Yield and Ultimate strength of the section(N/mm2)\footnotesize{Steel\ Grade = \text{Yield and\ Ultimate strength of\ the\ section}\hspace{0.1cm}(N/mm^2)}

MEd=Major and minor design moments(kNm)\footnotesize{M_{Ed} = \text{Major\ and\ minor\ design\ moments}\hspace{0.1cm}(kNm)}

VEd=Major and minor design shear forces(kN)\footnotesize{V_{Ed} = \text{Major\ and\ minor\ design\ shear\ forces}\hspace{0.1cm}(kN)}

NEd=Tension or Compression force on section(kN)\footnotesize{N_{Ed} = \text{Tension\ or\ Compression\ force\ on\ section}\hspace{0.1cm}(kN)}

Technical notes

  1. This calculator is for section checks only. Member checks are not included.
  2. Sections are checked for axial, bending and shear separately. Combined actions are not considered.
  3. This calculator is populated for IPE (parallel faced flange beams) and HE (wide/very wide flanged beams) steel sections.


Inputs

Section Properties



Section
:IPE 100



Production Type
:Rolled


Material Properties



Steel Grade
:S355


Design Forces



Nt,Ed
:125kN



Nc,Ed
:150kN



MEd - Major
:50kN m



MEd - Minor
:30kN m



VEd - Major
:25kN



VEd - Minor
:15kN


Output

Section Capacities



Nt,Rd
:365.65kN



Nc,Rd
:365.65kN



Mc,Rd - Major Axis
:13.987kN m



Mc,Rd - Minor Axis
:3.266kN m



Vc,Rd - Major Axis
:103.744271943278kN



Vc,Rd - Minor Axis
:103.744271943278kN


Utilization Factors



Nt,Ed/Nt,Rd
:0.34



Nc,Ed/Nc,Rd
:0.41



MEd/Mc,Rd (Major)
:3.57



MEd/Mc,Rd (Minor)
:9.19



VEd/Vc,Rd (Major)
:0.24



VEd/Vc,Rd (Minor)
:0.14


Explanation

Section Classification

According to EC3 Chapter 5.5, sections are classified as Class 1 to 4 depending on how their cross-section behave under compressive load.
  1. Class 1 (Plastic): can form a plastic hinge with the rotation capacity required from plastic analysis without reduction of the resistance.
  2. Class 2 (Compact): can develop their plastic moment resistance, but have limited rotation capacity because of local buckling.
  3. Class 3 (Semi-compact): the stress in the extreme compression fibre of the steel member assuming an elastic distribution of stresses can reach the yield strength, but local buckling is liable to prevent development of the plastic moment resistance.
  4. Class 4 (Slender): local buckling will occur before the attainment of yield stress in one or more parts of the cross-section.
The classification of a section depends on the width to thickness ratio of the parts subject to compression. Detailed table for classification can be found in Table 5.2.
Stress distribution of a section depending on Class 1 to 4


Tension

Tension capacity of a section is calculated as per EC3 Chapter 6.2.3 - Equation 6.6.

Npl,Rd =AfyγM0  A=Area of section fy= Yield strength of steelγM0= partial factor for resistance ofcross sectionsN_{pl,Rd}\ = \frac{Af_y}{\gamma_{M0}}\ \\ \scriptsize\ A= Area\ of\ section\\\ f_y=\ Yield\ strength\ of\ steel\\\gamma_{M0}=\ partial\ factor\ for\ resistance\ of cross\ sections

Compression

Compression capacity of a section is calculated as per EC3 Chapter 6.2.4, employing either Equation 6.10 or 6.11 based on the section class.

Nc,Rd={AfyγM0 if  Class =1, 2 or 3 AefffyγM0 if  Class =4 A = Area of section Aeff= Effective area of section fy= Yield strength of steelγM0 = partial factor for resistance ofcross sectionsN_{c,Rd} = \begin{cases}\\ \frac{Af_y}{\gamma_{M0}}\ \scriptsize{if\ }\ Class\ = 1,\ 2\ or\ 3\ &\\\\ \frac{A_{eff}f_y}{\gamma_{M0}} \ \scriptsize{if\ }\ Class\ = 4\end{cases}\\\scriptsize\ A\ =\ Area\ of\ section\ \\A_{eff}=\ Effective\ area\ of\ section \\\scriptsize\ f_y=\ Yield\ strength\ of\ steel\\\scriptsize\gamma_{M0}\ =\ partial\ factor\ for\ resistance\ of cross\ sections\\

Bending Moment

Bending capacity of a section is calculated as per EC3 Chapter 6.2.5, utilizing Equation 6.13, 6.14, or 6.15 based on the assigned section class.

Mc,Rd={ Mpl,Rd =WplfyγM0 if Class =1 or 2 Mel,Rd =Wel,minfyγM0 if Class = 3=Weff,minfyγM0 if Class = 4Wpl:Plastic section modulusWel,min:Minimum elastic section modulus Weff,min:Minimum effective section modulus fy: Yield strength of steelγm0: partial factor for resistance ofcross sectionsM_{c,Rd} = \begin{cases}\\\ M_{pl,Rd}\ =\frac{W_{pl}f_y}{\gamma_{M0}}\ \scriptsize{if\ Class\ =1\ or\ 2}\\\ M_{el,Rd}\ =\frac{W_{el,min}f_y}{\gamma_{M0}}\ \scriptsize{if\ Class\ =\ 3}\\\hspace{1.2cm}=\frac{W_{eff,min}f_y}{\gamma_{M0}}\ \scriptsize{if\ Class\ =\ 4}\\\end{cases}\\\scriptsize W_{pl}: Plastic\ section\ modulus\\\\ W_{el,min}: Minimum\ elastic\ section\ modulus\\\ W_{eff,min}: Minimum\ effective\ section\ modulus\\\ f_y:\ Yield\ strength\ of\ steel\\\gamma_{m0}:\ partial\ factor\ for\ resistance\ of cross\ sections\\

Shear

Shear capacity of a section is calculated as per EC3 Section 6.2.6 - Equation 6.18.

Vpl,Rd =Avfy(3)γM0 Av:Shear area fy: Yield strength of steelγm0: partial factor for resistance ofcross sectionsV_{pl,Rd}\ =\frac{A_vf_y\sqrt(3)}{\gamma_{M0}}\\\scriptsize\ A_{v}: Shear\ area\\\ f_y:\ Yield\ strength\ of\ steel\\\gamma_{m0}:\ partial\ factor\ for\ resistance\ of cross\ sections


Acknowledgements

This calculation was built in collaboration with Hakan Keskin. Learn more.

Related Content

  1. Steel Beam and Column Designer to AISC 360
  2. Steel Beam and Column Designer to AS4100