Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🎖️
Bounty Program
🌵
CalcTree
This tool calculates section capacities and utilization factors of IPE (parallel faced flange beams) or HE (wide/very wide flanged beams) steel sections. It considers axial compression or tension, bending, and shear effects on the section.
📝 This calculation has been written in accordance with EN 1993-1-1:2005 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. This code is typically referred to as "EC3".




Calculation

List of Inputs that used in this calculator

Technical notes

  1. This calculator is for section checks only. Member checks are not included.
  2. Sections are checked for axial, bending and shear separately. Combined actions are not considered.

Inputs

Section Properties



Section
:IPE 750 x 147



Production Type
:Rolled


Material Properties



Steel Grade
:S355


Design Forces



Nt,Ed
:125kN



Nc,Ed
:150kN



MEd - Major
:50kN m



MEd - Minor
:30kN m



VEd - Major
:25kN



VEd - Minor
:15kN


Output

Section Capacities



Nt,Rd
:6674kN



Nc,Rd
:6674kN



Mc,Rd - Major Axis
:1814.05kN m



Mc,Rd - Minor Axis
:224.005kN m



Vc,Rd - Major Axis
:2334.27378823541kN



Vc,Rd - Minor Axis
:2334.27378823541kN


Utilization Factors



Nt,Ed/Nt,Rd
:0



Nc,Ed/Nc,Rd
:0



MEd/Mc,Rd (Major)
:0



MEd/Mc,Rd (Minor)
:0



VEd/Vc,Rd (Major)
:0.010709969038764174



VEd/Vc,Rd (Minor)
:0.0064259814232585045


Explanation

Section Classification

According to EC3 Chapter 5.5, sections are classified as Class 1 to 4 depending on how their cross-section behave under compressive load.
  1. Class 1 (Plastic): can form a plastic hinge with the rotation capacity required from plastic analysis without reduction of the resistance.
  2. Class 2 (Compact): can develop their plastic moment resistance, but have limited rotation capacity because of local buckling.
  3. Class 3 (Semi-compact): the stress in the extreme compression fibre of the steel member assuming an elastic distribution of stresses can reach the yield strength, but local buckling is liable to prevent development of the plastic moment resistance.
  4. Class 4 (Slender): local buckling will occur before the attainment of yield stress in one or more parts of the cross-section.
The classification of a section depends on the width to thickness ratio of the parts subject to compression. Detailed table for classification can be found in Table 5.2.
Stress distribution of a section depending on Class 1 to 4


Tension

Tension capacity of a section is calculated as per EC3 Chapter 6.2.3 - Equation 6.6.

Npl,Rd =AfyγM0  A=Area of section fy= Yield strength of steelγM0= partial factor for resistance ofcross sectionsN_{pl,Rd}\ = \frac{Af_y}{\gamma_{M0}}\ \\ \scriptsize\ A= Area\ of\ section\\\ f_y=\ Yield\ strength\ of\ steel\\\gamma_{M0}=\ partial\ factor\ for\ resistance\ of cross\ sections

Compression

Compression capacity of a section is calculated as per EC3 Chapter 6.2.4, employing either Equation 6.10 or 6.11 based on the section class.

Nc,Rd={AfyγM0 if  Class =1, 2 or 3 AefffyγM0 if  Class =4 A = Area of section Aeff= Effective area of section fy= Yield strength of steelγM0 = partial factor for resistance ofcross sectionsN_{c,Rd} = \begin{cases}\\ \frac{Af_y}{\gamma_{M0}}\ \scriptsize{if\ }\ Class\ = 1,\ 2\ or\ 3\ &\\\\ \frac{A_{eff}f_y}{\gamma_{M0}} \ \scriptsize{if\ }\ Class\ = 4\end{cases}\\\scriptsize\ A\ =\ Area\ of\ section\ \\A_{eff}=\ Effective\ area\ of\ section \\\scriptsize\ f_y=\ Yield\ strength\ of\ steel\\\scriptsize\gamma_{M0}\ =\ partial\ factor\ for\ resistance\ of cross\ sections\\

Bending Moment

Bending capacity of a section is calculated as per EC3 Chapter 6.2.5, utilizing Equation 6.13, 6.14, or 6.15 based on the assigned section class.

Mc,Rd={ Mpl,Rd =WplfyγM0 if Class =1 or 2 Mel,Rd =Wel,minfyγM0 if Class = 3=Weff,minfyγM0 if Class = 4Wpl:Plastic section modulusWel,min:Minimum elastic section modulus Weff,min:Minimum effective section modulus fy: Yield strength of steelγm0: partial factor for resistance ofcross sectionsM_{c,Rd} = \begin{cases}\\\ M_{pl,Rd}\ =\frac{W_{pl}f_y}{\gamma_{M0}}\ \scriptsize{if\ Class\ =1\ or\ 2}\\\ M_{el,Rd}\ =\frac{W_{el,min}f_y}{\gamma_{M0}}\ \scriptsize{if\ Class\ =\ 3}\\\hspace{1.2cm}=\frac{W_{eff,min}f_y}{\gamma_{M0}}\ \scriptsize{if\ Class\ =\ 4}\\\end{cases}\\\scriptsize W_{pl}: Plastic\ section\ modulus\\\\ W_{el,min}: Minimum\ elastic\ section\ modulus\\\ W_{eff,min}: Minimum\ effective\ section\ modulus\\\ f_y:\ Yield\ strength\ of\ steel\\\gamma_{m0}:\ partial\ factor\ for\ resistance\ of cross\ sections\\

Shear

Shear capacity of a section is calculated as per EC3 Section 6.2.6 - Equation 6.18.

Vpl,Rd =Avfy(3)γM0 Av:Shear area fy: Yield strength of steelγm0: partial factor for resistance ofcross sectionsV_{pl,Rd}\ =\frac{A_vf_y\sqrt(3)}{\gamma_{M0}}\\\scriptsize\ A_{v}: Shear\ area\\\ f_y:\ Yield\ strength\ of\ steel\\\gamma_{m0}:\ partial\ factor\ for\ resistance\ of cross\ sections


Acknowledgements

This calculation was built in collaboration with Hakan Keskin. Learn more.