Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🎖️
Bounty Program
🌵
CalcTree
Using this calculator you can visualise the shear force, bending moment and deflection of a simply supported beam when a uniformly distributed load (UDL) is applied spanning distance 'a' to 'b' from the left support.

Calculations

Applied force is negative (-) in the downwards direction.

Inputs

Geometry and Loading
  1. Length of beam,
    
    Length of beam, L
    :10.00m
    
  1. Distance from left support to start of UDL,
    
    a
    :4.00m
    
  1. Distance from left support to end of UDL,
    
    b
    :8.00m
    
  1. Magnitude of UDL,
    
    F
    :-5.00kN/m
    
Beam Properties
  1. Elastic Modulus,
    
    E
    :200.00GPa
    
  1. Second Moment of Inertia,
    
    I
    :142,000,000.00mm4
    

Simply Supported Beam with UDL

Free body diagram


Outputs



Max Shear
:-12.00kN


Max Moment
:38.40kN m


Max Deflection
:-12.94mm

Can’t display the image because of an internal error. Our team is looking at the issue.



Explanation

Using Macaulay's Theorem and the Double Integration Method, we can create the equations for shear force, bending moment and deflection as follows:
  1. Shear Force

V(x)=Ra<x0>0+F<xa>1F<xb>1V(x) = R_a<x-0>^{0} + F<x-a>^{1} - F<x-b>^{1}
  1. Bending Moment

M(x)=Ra<x0>1+F2<xa>2F2<xb>2M(x) = R_a<x-0>^{1} + \frac{F}{2}<x-a>^{2} - \frac{F}{2}<x-b>^{2}
  1. Deflection

Y(x)=1EI[Ra6<x0>3+F24<xa>4F24<xb>4+C1x]whereC1=[RaL26+F(La)424LF(Lb)424L]Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F}{24}<x-a>^{4} - \frac{F}{24}<x-b>^{4} + \hspace{0.1cm}C_1x] \\ \text{where} \hspace{0.3cm} C_1 =-[\frac{R_aL^2}{6} + \frac{F(L-a)^4}{24L} - \frac{F(L-b)^4}{24L} ]
Want to know how to derive the equations? Keep reading!

Derivation

Step 1: Find the beam support reactions by taking moments at each end.
Free body diagram


ΣM@x=L=0Rb×L=w×eRa=w×eL\Sigma M_{@x=L} = 0 \\ R_b\times L= -w\times e \\ R_a = \frac{-w\times e}{L}

ΣM@x=0=0Ra×L=w×fRb=w×fL\Sigma M_{@x=0} = 0 \\ R_a\times L= -w\times f \\ R_b = \frac{-w\times f}{L}
Step 2: Find the shear force

and bending moment

equations by using the table of Macaulay's Singularity Functions on the homepage. Because the load is not applied up to the right end of the beam, there are a few extra steps to consider:
  1. Change the FBD so that the UDL does a wrap-around the beam and stops at the
    
    from the wall on the underside of the beam
  2. Cut a section 'A' just before the right support reaction
  1. Apply Macaulay's Theorem as normal to get the
    
    and
    
    equations considering only the forces present on the left side of the section cut

Free body diagram adjusted for Macaulay's Theorem


V(x)=Ra<x0>0+F<xa>1F<xb>1V(x) = R_a<x-0>^{0} + F<x-a>^{1} - F<x-b>^{1}

M(x)=Ra<x0>1+F2<xa>2F2<xb>2M(x) = R_a<x-0>^{1} + \frac{F}{2}<x-a>^{2} - \frac{F}{2}<x-b>^{2}
Step 3: Perform the Double Integration Method to find the deflection equation.
  1. Integrate the Bending moment equations once to get the Slope Equation.

θ(x)=1EIM(x)dxθ(x)=1EI[Ra2<x0>2+F6<xa>3F6<xb>3+C1]\theta(x) = \frac{1}{EI}\int M(x) \hspace{0.1cm} dx \\ \theta(x) = \frac{1}{EI} [\frac{R_a}{2}<x-0>^{2} + \frac{F}{6}<x-a>^{3} - \frac{F}{6}<x-b>^{3} +\hspace{0.1cm} C_{1}]
  1. Integrate the Slope Equation to find the Deflection Equation.

Y(x)=1EIθ(x)dxY(x)=1EI[Ra6<x0>3+F24<xa>4F24<xb>4+C1x+C2]Y(x) = \frac{1}{EI}\int \theta(x) \hspace{0.1cm} dx \\ Y(x) =\frac{1}{EI}[\frac{R_a}{6}<x-0>^{3} + \frac{F}{24}<x-a>^{4} - \frac{F}{24}<x-b>^{4} +\hspace{0.1cm} C_{1}x +\hspace{0.1cm} C_{2}]
  1. Apply the Boundary Conditions to find the constants
    
    and
    
    

BC 1: @ x=0, Y(x)=00=1EI[Ra6<00>3+F24<0a>4F24<0b>4+C1(0)+C2]0=1EI[0+0+0+0+C2]C2=0\text{BC 1: @ x=0, Y(x)=0} \\ 0 =\frac{1}{EI}[\frac{R_a}{6}<0-0>^{3} + \frac{F}{24}<0-a>^{4} - \frac{F}{24}<0-b>^{4} +\hspace{0.1cm} C_{1}(0) +\hspace{0.1cm} C_{2}] \\0=\frac{1}{EI}[ 0 + 0 + 0 + 0 +C_{2}] \\ C_{2}= 0

BC 2: @ x=L, Y(x)=00=1EI[Ra6<L0>3+F24<La>4F24<Lb>4+C1(L)]0=1EI[RaL36+F(La)424+F(Lb)424+C1L]C1=[RaL26+F(La)424L+F(Lb)424L]\text{BC 2: @ x=L, Y(x)=0} \\ 0 =\frac{1}{EI}[\frac{R_a}{6}<L-0>^{3} + \frac{F}{24}<L-a>^{4} - \frac{F}{24}<L-b>^{4} +\hspace{0.1cm} C_{1}(L)] \\ 0=\frac{1}{EI}[\frac{R_aL^3}{6} + \frac{F(L-a)^4}{24} + \frac{F(L-b)^4}{24} +C_{1}L] \\ C_{1} = -[\frac{R_aL^2}{6} + \frac{F(L-a)^4}{24L} + \frac{F(L-b)^4}{24L} ]
  1. So you final Deflection equation becomes:

Y(x)=1EI[Ra6<x0>3+F24<xa>4F24<xb>4+C1x]whereC1=[RaL26+F(La)424L+F(Lb)424L]Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F}{24}<x-a>^{4} - \frac{F}{24}<x-b>^{4} + \hspace{0.1cm}C_1x] \\ \text{where} \hspace{0.3cm} C_1 =-[\frac{R_aL^2}{6} + \frac{F(L-a)^4}{24L} + \frac{F(L-b)^4}{24L} ]
You are now ready to plot the curves to determine the overall shear force, bending moment and deflection of a simply supported beam with a UDL!