Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Harmonic Number Calculator's banner
/custom-emojis/emojis/calculator.png

Harmonic Number Calculator

This calculator computes the

harmonic number, which is the sum of the reciprocals of the positive integers up to integer

. If the

is non-integer, the calculator computes the approximate harmonic number by using the digamma function and the Euler–Mascheroni constant.

Calculation

Inputs



n
:5.00


Output



Hn
:2.28

Integer


  1. 
    
    
Non-Integer


  1. 
    
    

Explanation

The harmonic series approximates the natural logarithm plus the Euler-Mascheroni constant, that is:

Hnln(n)+γH_n \approx ln(n)+\gamma
This approximation becomes more accurate as

becomes larger. Because the harmonic series approximates the natural logarithm, it is a divergent series which means it grows infinitely.
Graph showing how the harmonic series is approximates the logarithmic function

The harmonic number is calculated in two different ways for integer and non-integer values of

:
Integer


  1. 
    
    
Non-Integer


  1. 
    
    
Where:
  1. 
    
    is the term at which the calculation of the harmonic number (also known as the series sum) ends. The input can be an integer or a non-integer.
  2. 
    
    is the
    
    harmonic number. For integers, it's the sum of the reciprocals of the positive integers up to integer
    
    . For non-integers, it's approximated using the digamma function and the Euler–Mascheroni constant.
  1. 
    
    is the digamma function, which is the logarithmic derivative of the gamma function, given by
    
    . It is used to approximate
    
    for non-integer values of
    
    .
  2. 
    
    is the gamma function, which extends the factorial function to complex and real number arguments, except for negative integers. It is defined for positive real numbers
    
    as:
    
    . The gamma function is related to factorials by
    
    for any natural number
    
    .
  1. 
    
    is the Euler–Mascheroni constant, which is a mathematical constant approximately equal to
    
    γ
    :0.5772156649
    

This calculator is particularly useful in scenarios such as:
  1. Mathematics: Harmonic numbers play a key role in analyzing series convergence and divergence.
  1. Computer Science: Harmonic numbers are crucial for algorithm analysis, particularly in sorting and hashing, by estimating average case scenarios.
  1. Physics: Harmonic numbers explain overtones in music and resonances in circuits, key to understanding wave patterns and vibrations.

Related Resources

  1. Harmonic Mean Calculator
  2. Hexadecimal to Binary Converter
  3. Poisson Distribution Calculator
  4. Prime Number Checker
Check out our full library of CalcTree templates here!