Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
EM Wave Propagation Calculator
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Polar-Cartesian Coordinate Converter's banner
/custom-emojis/emojis/calculator.png

Polar-Cartesian Coordinate Converter

This calculator converts inputs as polar coordinates to cartesian coordinates (and vice versa). A degree to radian converter (and vice versa) is also provided.


Calculation

Polar Coordinate to Cartesian Coordinate

Inputs

Polar Coordinate




r
:200.0



θ
:222.0deg


Output

Cartesian Coordinate




x-coordinate
:-148.6



y-coordinate
:-133.8


x=rcos(θ),y=rsin(θ)x = r \cos(\theta), \hspace{0.3cm} y=r\sin(\theta)

Output Graph

Can’t display the image because of an internal error. Our team is looking at the issue.



Cartesian Coordinate to Polar Coordinate

Inputs

Cartesian Coordinate




x-coordinate (1)
:5.0



y-coordinate (1)
:-8.0


Output

Polar Coordinate




r (1)
:9.4



θ (1)
:-58.0deg


r=x2+y2,θ=tan1(yx)r=\sqrt{x^2+y^2}, \hspace{0.3cm}\theta = tan^{-1}(\frac {y}{x})

Output Graph

Can’t display the image because of an internal error. Our team is looking at the issue.




Radian Degree Converter

Radians to Degrees:


Radians
:0.23rad



Degrees
:13.18deg


θ°=(θc)×(180π)\theta\degree = (\theta^c) \times (\frac {180}{\pi})
Degrees to Radians:


Degrees (1)
:114.59deg



Radians (1)
:2.00rad


θc=(θ°)×(π180)\theta^c= (\theta\degree) \times (\frac {\pi}{180})
The symbol for radians is

and the symbol for degrees is

.



Explanation

Polar and cartesian coordinates can be used to describe location, orientation or direction in a two-dimensional space at any time.

What is the polar coordinate system?

The polar coordinate system describes the location of a point in a 2D plane by defining a fixed point away from the origin, called the pole, and an angle moving counter-clockwise from the positive x-axis. A polar coordinate is expressed as

where

is the pole and

is the direction of movement.
Polar coordinate system


What is the cartesian coordinate system?

The cartesian coordinate system, however, describes the location of a point in a 2D plane using a pair of numbers called an ordered pair. The ordered pair is expressed as

where

is the distance away from the origin along the horizontal axis and

is the distance away from the origin along the vertical axis. Direction in the cartesian coordinate system is expressed as a positive or a negative sign.
Cartesian coordinate system


Converting between coordinate systems

Discover how to convert between the two coordinate systems in the toggles below.
Converting between polar and cartesian coordinates


Converting Polar Coordinates to Cartesian Coordinates

With the concept of right triangles and trigonometric equations, it is possible to convert polar coordinates

to cartesian coordinates

.
The relationship of the x-coordinate and y-coordinate is expressed as:

x=r cos(θ)x = r\ \cos(\theta)

y=r sin(θ)y = r\ \sin(\theta)
where

is in radians.


Converting Cartesian Coordinates to Polar Coordinates

The same concept can be used in converting cartesian coordinates to polar coordinates. Their relationship is expressed as:

r=x2+y2r =\sqrt {x^2 + y^2}

θ=tan1(yx)\theta = tan^{-1} (\frac {y}{x})
where

is in radians.



Related Resources

  1. Pythagorean Theorem Calculator
  2. Poisson Distribution Calculator
Check out our full library of CalcTree templates here!

References

  1. Stover, C. & Weisstein, E. "Polar Coordinates" Available at: Wolfram MathWorld Web Encylopedia.
  2. Stover, C. & Weisstein, E. "Cartesian Coordinates" Available at: Wolfram MathWorld Web Encylopedia.
  3. NASA. "Rectangular and Polar Coordinates" Available at: https://www.grc.nasa.gov/www/k-12/airplane/coords.html.

Check out our library of engineering tools here!