Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🎖️
Bounty Program
🌵
CalcTree

Calculation

Inputs



σx
:-100MPa



σy
:10MPa



σz
:50MPa


Output

Average Normal Stresses



σ1
:-45.0MPa



σ2
:30.0MPa



σ3
:-25.0MPa


Shear Stresses



τxy
:55.0MPa



τyz
:20.0MPa



τxz
:75.0MPa



τmax
:75.0MPa





Explanation

The 3D stresses are usually given by six stress components, the normal stresses at the x- y- and z- directions and the shear stresses at the xy , yz, and xz planes. These stresses are then put in a 3 x 3 symmetric matrix shown below.

T3=[σxτxyτxzτxyσyτyzτxzτyzσz]T_3 = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \\\end{bmatrix}
In order to get the maximum normal and shear stresses, we get the eigenvalues of the matrix above. Say, that the cut plane has the following directional cosine:

v=(vx, vy, vz)\mathbf{v} = (v_x,\ v_y,\ v_z)
We can find the normal stress on this plane by,

σv=σxvx2+σyvy2+σzvz2+2τxyvxvy+2τyzvyvz+2τxzvxvz\sigma_v = \sigma_x v_{x}^{2} + \sigma_y v_{y}^{2} + \sigma_z v_{z}^{2} + 2 \tau_{xy} v_{x} v_{y} + 2 \tau_{yz} v_{y} v_{z} + 2 \tau_{xz} v_{x} v_{z}
To find the eigenvalues and eigenvectors, we use the following characteristic polynomial equation:

det(σI3T3) = σ3Aσ3BσC=0det(\sigma I_3-T_3)\ =\ \sigma^3- A\sigma^3 - B\sigma-C=0
Wherein

A=σx+σy+σzB=σxσy+σyσz+σxσzτxy2τyz2τxz2C=σxσyσz+2τxyτyzτxzσxτyz2σyτxz2σzτxy2A = \sigma_x + \sigma_y + \sigma_z \\B = \sigma_x \sigma_y + \sigma_y \sigma_z + \sigma_x \sigma_z - \tau_{xy}^2 - \tau_{yz}^2 - \tau_{xz}^2 \\C = \sigma_x \sigma_y \sigma_z + 2 \tau_{xy} \tau_{yz} \tau_{xz} - \sigma_x \tau_{yz}^2 - \sigma_y \tau_{xz}^2 - \sigma_z \tau_{xy}^2
We can then find the normal stresses using the following system of equations:

A=σ1+σ2+σ3B=σ1σ2+σ2σ3+σ1σ3C=σ1σ2σ3A = \sigma_1 + \sigma_2 + \sigma_3 \\B = \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3 \\C = \sigma_1 \sigma_2 \sigma_3
For a more graphical approach, we can use the following approach:

σave1 = σx + σy2σave2 = σy + σz2σave3 = σx + σz2\sigma_{ave1}\ =\ \frac{\sigma_x\ +\ \sigma_y}{2}\\\sigma_{ave2}\ =\ \frac{\sigma_y\ +\ \sigma_z}{2}\\\sigma_{ave3}\ =\ \frac{\sigma_x\ +\ \sigma_z}{2}
The obtained values will serve as the centers of our circles. The radii of the circles can be obtained by:

radius1 = σx σave1radius2 = σy σave2radius3 = σz σave3radius_1\ =\ |\sigma_x\ -\sigma_{ave1}|\\radius_2\ =\ |\sigma_y\ -\sigma_{ave2}|\\radius_3\ =\ |\sigma_z\ -\sigma_{ave3}|

References

Related Resources

Check out our full library of CalcTree templates here!
  1. Mohr's Circle for 2D Stresses
  2. Weight to Volume relationships in soils