Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
3D Mohr's Circle 's banner

3D Mohr's Circle

Calculation

Inputs



σx
:-100MPa



σy
:10MPa



σz
:50MPa


Output

Average Normal Stresses



σ1
:-45.0MPa



σ2
:30.0MPa



σ3
:-25.0MPa


Shear Stresses



τxy
:55.0MPa



τyz
:20.0MPa



τxz
:75.0MPa



τmax
:75.0MPa





Explanation

The 3D stresses are usually given by six stress components, the normal stresses at the x- y- and z- directions and the shear stresses at the xy , yz, and xz planes. These stresses are then put in a 3 x 3 symmetric matrix shown below.

T3=[σxτxyτxzτxyσyτyzτxzτyzσz]T_3 = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \\\end{bmatrix}
In order to get the maximum normal and shear stresses, we get the eigenvalues of the matrix above. Say, that the cut plane has the following directional cosine:

v=(vx, vy, vz)\mathbf{v} = (v_x,\ v_y,\ v_z)
We can find the normal stress on this plane by,

σv=σxvx2+σyvy2+σzvz2+2τxyvxvy+2τyzvyvz+2τxzvxvz\sigma_v = \sigma_x v_{x}^{2} + \sigma_y v_{y}^{2} + \sigma_z v_{z}^{2} + 2 \tau_{xy} v_{x} v_{y} + 2 \tau_{yz} v_{y} v_{z} + 2 \tau_{xz} v_{x} v_{z}
To find the eigenvalues and eigenvectors, we use the following characteristic polynomial equation:

det(σI3T3) = σ3Aσ3BσC=0det(\sigma I_3-T_3)\ =\ \sigma^3- A\sigma^3 - B\sigma-C=0
Wherein

A=σx+σy+σzB=σxσy+σyσz+σxσzτxy2τyz2τxz2C=σxσyσz+2τxyτyzτxzσxτyz2σyτxz2σzτxy2A = \sigma_x + \sigma_y + \sigma_z \\B = \sigma_x \sigma_y + \sigma_y \sigma_z + \sigma_x \sigma_z - \tau_{xy}^2 - \tau_{yz}^2 - \tau_{xz}^2 \\C = \sigma_x \sigma_y \sigma_z + 2 \tau_{xy} \tau_{yz} \tau_{xz} - \sigma_x \tau_{yz}^2 - \sigma_y \tau_{xz}^2 - \sigma_z \tau_{xy}^2
We can then find the normal stresses using the following system of equations:

A=σ1+σ2+σ3B=σ1σ2+σ2σ3+σ1σ3C=σ1σ2σ3A = \sigma_1 + \sigma_2 + \sigma_3 \\B = \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3 \\C = \sigma_1 \sigma_2 \sigma_3
For a more graphical approach, we can use the following approach:

σave1 = σx + σy2σave2 = σy + σz2σave3 = σx + σz2\sigma_{ave1}\ =\ \frac{\sigma_x\ +\ \sigma_y}{2}\\\sigma_{ave2}\ =\ \frac{\sigma_y\ +\ \sigma_z}{2}\\\sigma_{ave3}\ =\ \frac{\sigma_x\ +\ \sigma_z}{2}
The obtained values will serve as the centers of our circles. The radii of the circles can be obtained by:

radius1 = σx σave1radius2 = σy σave2radius3 = σz σave3radius_1\ =\ |\sigma_x\ -\sigma_{ave1}|\\radius_2\ =\ |\sigma_y\ -\sigma_{ave2}|\\radius_3\ =\ |\sigma_z\ -\sigma_{ave3}|

References

Related Resources

Check out our full library of CalcTree templates here!
  1. Mohr's Circle for 2D Stresses
  2. Weight to Volume relationships in soils

Check out our library of engineering tools here!