Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Beam Analysis Calculator for simply supported beam with point load's banner
/custom-emojis/emojis/calculator.png

Beam Analysis Calculator for simply supported beam with point load

Using this calculator you can visualise the shear force, bending moment and deflection of a simply supported beam when a point load is applied at a distance 'a' from the left support.

Calculator

Applied force is negative (-) in the downwards direction.

Inputs

Geometry and Loading
  1. Length of beam,
    
    L
    :10.00 m
    
  2. Distance from left support to Point load,
    
    a
    :1.00 m
    
  3. Magnitude of force applied,
    
    F
    :-50.00 kN
    
Beam Properties
  1. Elastic Modulus,
    
    E
    :200 GPa
    
  2. Second Moment of Inertia,
    
    I
    :1.00e-4 m^4
    
Simply Supported Beam with Point Load

Free body diagram


Outputs

Note, self-weight loading is excluded.
  1. 
    
    Max Shear
    :45.0 kN
    
  1. 
    
    Max Moment
    :45.0 kN m
    
  1. 
    
    Max Deflection
    :-15.8 mm
    
  1. 
    
    Ra
    :45.0 kN
    
  2. 
    
    Rb
    :5.0 kN
    

Can’t display the image because of an internal error. Our team is looking at the issue.



Beam Analysis Equations

Using Macaulay's Theorem and the Double Integration Method, we can create the equations for shear force, bending moment and deflection as follows:
  1. Shear Force

V(x)=Ra<x0>0+F<xa>0V(x) = R_a<x-0>^{0} + F<x-a>^{0}
  1. Bending Moment

M(x)=Ra<x0>1+F<xa>1M(x) = R_a<x-0>^{1} + F<x-a>^{1}
  1. Deflection

Y(x)=1EI[Ra6<x0>3+F6<xa>3(Fb36L+RaL26)x]Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F}{6}<x-a>^{3} - (\frac{Fb^{3}}{6L} + \frac{R_{a}L^{2}}{6})x]
Want to know how to derive these formulas? Keep reading!

Derivation

Step 1: Find the beam support reactions by taking moments at each end.
Free body diagram


ΣM@x=L=0Ra×L=F×bRa=FbL\Sigma M_{@x=L} = 0 \\ R_a \times L = -F\times b \\ R_a = \frac{-Fb}{L}

ΣM@x=0=0Rb×L=F×aRb=FaL\Sigma M_{@x=0} = 0 \\ R_b \times L = -F\times a \\ R_b = \frac{-Fa}{L}
Step 2: Find the shear force

and bending moment

equations by using the table of Macaulay's Singularity Functions on the homepage. There will be two terms in both

and

equations since there is

reaction force at

and

applied force at

.

V(x)=Ra<x0>0+F<xa>0V(x) = R_a<x-0>^{0} + F<x-a>^{0}

M(x)=Ra<x0>1+F<xa>1M(x) = R_a<x-0>^{1} + F<x-a>^{1}
Step 3: Perform the Double Integration Method to find the deflection equation.
  1. Integrate the Bending Moment Equation once to get the Slope Equation.

θ(x)=1EIM(x)dxθ(x)=1EI[Ra2<x0>2+F2<xa>2+C1]\theta(x) = \frac{1}{EI}\int M(x) \hspace{0.1cm} dx \\ \theta(x) = \frac{1}{EI} [\frac{R_a}{2}<x-0>^{2} + \frac{F}{2}<x-a>^{2} +\hspace{0.1cm} C_{1}]
  1. Integrate the Slope Equation to get the Deflection Equation.

Y(x)=1EIθ(x)dxY(x)=1EI[Ra6<x0>3+F6<xa>3+C1x+C2]Y(x) = \frac{1}{EI}\int \theta(x) \hspace{0.1cm} dx \\ Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F}{6}<x-a>^{3} +\hspace{0.1cm} C_{1}x +\hspace{0.1cm} C_{2}]
  1. Apply the Boundary Conditions to find the constants
    
    and
    
    

BC 1: @ x=0, Y(x)=00=1EI[Ra6<00>3+F6<0a>3+C1(0)+C2]0=1EI[0+0+0+C2]C2=0\text{BC 1: @ x=0, Y(x)=0} \\ 0 =\frac{1}{EI}[ \frac{R_a}{6}<0-0>^{3} + \frac{F}{6}<0-a>^{3} +\hspace{0.1cm} C_{1}(0) +\hspace{0.1cm} C_{2}] \\ 0 = \frac{1}{EI}[0+0+0+C_2] \\\rightarrow C_2 = 0

BC 2: @ x=L, Y(x)=00=1EI[Ra6<L0>3+F6<La>3+C1(L)]C1L=Ra6L3F6b3C1=[Fb36L+Ra6L2]\text{BC 2: @ x=L, Y(x)=0} \\ 0 =\frac{1}{EI}[ \frac{R_a}{6}<L-0>^{3} + \frac{F}{6}<L-a>^{3} +\hspace{0.1cm} C_{1}(L)] \\ C_1L = -\frac{R_a}{6}L^{3}-\frac{F}{6}b^{3} \\ \rightarrow C_1 = -[\frac{Fb^{3}}{6L} + \frac{R_a}{6}L^{2}]
After substituting the constant

, your final Deflection equation becomes:

Y(x)=1EI[Ra6<x0>3+F6<xa>3(Fb36L+RaL26)x]Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F}{6}<x-a>^{3} - (\frac{Fb^{3}}{6L} + \frac{R_{a}L^{2}}{6})x]
You are now ready to plot the curves to determine the overall shear force, bending moment and deflection of a simply supported beam with a point load!