Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Brayton Cycle Calculator's banner
/custom-emojis/emojis/calculator.png

Brayton Cycle Calculator

This calculator evaluates ratio equations, efficiency and effectiveness for the Brayton Cycles.


The following are the variables for the equations.

  1. V = the volume. i.e. V(1) is the volume at state 1.
  2. r(k) is the compression ratio
  3. r(e) is the expansion ratio
  4. r(c) is the cut-off ratio
  5. MEP = mean effective pressure. The constant theoretical pressure would produce the same network in one complete cycle if it acted on the piston. And can be defined as the following:

MEP = Net Work For One CycleDisplacement VolumeMEP\ =\ \frac{Net\ Work\ For\ One\ Cycle}{Displacement\ Volume}
  1. η = the efficiency of the cycle
  2. k = the adiabatic index
  1. P = the pressure. i.e. P(1) is the pressure at state 1.
  1. Where: P(1)[D(eff)-N(eff)] = Q(h)-Q(c), Q(h) is the amount of heat initially extracted, and Q(c) is the heat expelled.

WT=mCPΔTW_T=mC_P{\Delta}T

T2T1=T3T4\frac{T_2}{T_1}=\frac{T_3}{T_4}

QA=mCPΔTQ_A=mC_P{\Delta}T

Work Calculations

Inputs


m
:100.00g



C(P)
:4.18J/g*K



T (change in temp)
:20.00degC


Output


W
:8,360.00kJ


WP=mCPΔTW_P=mC_P{\Delta}T

Efficiency Calculations


Inputs


W(C)
:20.00kJ



W(T)
:30.00kJ


Output


r(BW)
:0.67


rBW=WCWTr_{BW}=\frac{W_C}{W_T}


η
:-0.10


η=11rpk1k\eta=1-\frac{1}{r_p\frac{k-1}{k}}

Net Work and Combustor Calculations


Inputs


P(1)
:40.00atm



P(2)
:100.00atm



T(1)
:25.00degC



T(3)
:35.00degC



T(max)
:25.00degC



T(min)
:30.00degC



Q(air)
:80.00J



Q (fuel)
:100.00J



k
:7.00


Maximum Net Work Results



P(x)
:63.25atm


Px=P1P2P_x=\sqrt{P_1P_2}


T(2)
:29.58degC


T2=T1T3T_2=\sqrt{T_1T_3}


r(p)
:0.90


rp=(TmaxTmin)k2k2r_p=(\frac{T_{max}}{T_{min}})^{\frac{k}{2k-2}}

Combustor Efficiency Results



e(c)
:0.80


ec=QairQfuele_c=\frac{Q_{air}}{Q_{fuel}}


r(B)
:0.65


rB=rpk1k(T1T3)r_B=r_p^{\frac{k-1}{k}}(\frac{T_1}{T_3})

Brayton Cycle

In using the calculators and inputting values above, refer to Figure 1 and the different states of the Brayton cycle.
Figure 1: Temperature vs Entropy Graph for a Brayton Cycle


Related Content

If you liked this, check out our other articles and resources!
  1. Check out our library of templates here.
  2. Diesel Cycle
  3. Duel Combustion Cycle
  4. Introduction to Thermodynamics
  5. Importance of Mechanical Engineering Calculation Templates
  6. Intro to Power Cycles

Check out our library of engineering tools here!