Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Steel Beam and Column Designer to AS4100's banner

Steel Beam and Column Designer to AS4100

Verified by the CalcTree engineering team on July 20, 2024

This calculator designs a standard steel section by computing the flexural and axial design capacities to Ultimate Limit State (ULS) methods.
All calculations are performed in accordance with AS4100-2020.
Common steel sections


📃 List of symbols used on this page


Ag = gross area of a crosssectionAa = net area of a crosssectionAo = plain shank area of a boltAs = tensile stress area of a bolt; or = area of a stiffener or stiffeners in contact with a flangeAw = gross sectional area of a webae = minimum distance from the edge of a hole to the edge of a ply measured in thedirection of the component of a force plus half the bolt diameter.d = depth of a sectionde = effective outside diameter of a circular hollow sectiondf = diameter of a fastener (bolt or pin); or= distance between flange centroidsdp = clear transverse dimension of a web panel; or= depth of deepest web panel in a lengthd1 = clear depth between flanges ignoring fillets or weldsd2 = ‘twice the clear distance from the neutral axes to the compression flange.W = Youngs modulus of elasticity, 200x10° MPa.e = eccentricityF = action in general, force or loadfu = tensile strength used in designfuf = minimum tensile strength of a boltfup = tensile strength of a plyfuw = nominal tensile strength of weld metalfy = yield stress used in designfys = yield stress of a stiffener used in designG = shear modulus of elasticity, 80x10° MPa; or= nominal dead loadI = second moment of area of a crosssectionIey = second moment of area of compression flange about the section minorprincipal y axisIx = I about the crosssection major principal xaxisIy = I about the crosssection minor principal yaxisJ = torsion constant for a crosssectike = member effective length factorkf = form factor for members subject to axial compressionkl = load height effective length factorkr = effective length factor for restraint against lateral rotationl = span; or,= member length; or,= segment or subsegment lengthle/r = geometrical slenderness ratiolj = length of a bolted lap splice connectionMb = nominal member moment capacityMbx = Mb about major principal xaxisMcx = lesser of Mix and MoxMo = reference elastic buckling moment for a member subject to bendingMoo = reference elastic buckling moment obtained using /. =Mos = Mob for a segment, fully restrained at both ends, unrestrained againstlateral rotation and loaded at shear centreMox = nominal outofplane member moment capacity about major principalxaxisMpr = nominal plastic moment capacity reduced for axial forceMprx = Mpr about major principal xaxisMpry = Mpr about minor principal yaxisMrx = Ms about major principal xaxis reduced by axial forceMry = Msabout minor principal yaxis reduced by axial forceMs = nominal section moment capacityMsx = Ms about major principal xaxisMsy = Ms about the minor principal yaxisMtx = lesser of Mrx and MoxM = design bending momentNc = nominal member capacity in compression\small{A_g \ = \ gross \ area \ of \ a \ cross-section } \newline \small{A_a \ = \ net \ area \ of \ a \ cross-section } \newline \small{A_o \ = \ plain \ shank \ area \ of \ a \ bolt } \newline \small{A_s \ = \ tensile \ stress \ area \ of \ a \ bolt; \ or } \newline \small{ \ = \ area \ of \ a \ stiffener \ or \ stiffeners \ in \ contact \ with \ a \ flange } \newline \small{A_w \ = \ gross \ sectional \ area \ of \ a \ web } \newline \small{a_e \ = \ minimum \ distance \ from \ the \ edge \ of \ a \ hole \ to \ the \ edge \ of \ a \ ply \ measured \ in \ the } \newline \small{ direction \ of \ the \ component \ of \ a \ force \ plus \ half \ the \ bolt \ diameter. } \newline \small{d \ = \ depth \ of \ a \ section } \newline \small{d_e \ = \ effective \ outside \ diameter \ of \ a \ circular \ hollow \ section } \newline \small{d_f \ = \ diameter \ of \ a \ fastener \ (bolt \ or \ pin); \ or } \newline \small{ = \ distance \ between \ flange \ centroids } \newline \small{d_p \ = \ clear \ transverse \ dimension \ of \ a \ web \ panel; \ or } \newline \small{ = \ depth \ of \ deepest \ web \ panel \ in \ a \ length } \newline \small{d_1 \ = \ clear \ depth \ between \ flanges \ ignoring \ fillets \ or \ welds } \newline \small{d_2 \ = \ ‘twice \ the \ clear \ distance \ from \ the \ neutral \ axes \ to \ the \ compression \ flange. } \newline \small{W \ = \ Young’s \ modulus \ of \ elasticity, \ 200x10° \ MPa. } \newline \small{e \ = \ eccentricity } \newline \small{F \ = \ action \ in \ general, \ force \ or \ load } \newline \small{f_u \ = \ tensile \ strength \ used \ in \ design } \newline \small{f_{uf} \ = \ minimum \ tensile \ strength \ of \ a \ bolt } \newline \small{f_{up} \ = \ tensile \ strength \ of \ a \ ply } \newline \small{f_{uw} \ = \ nominal \ tensile \ strength \ of \ weld \ metal } \newline \small{f_y \ = \ yield \ stress \ used \ in \ design } \newline \small{f_{ys} \ = \ yield \ stress \ of \ a \ stiffener \ used \ in \ design } \newline \small{G \ = \ shear \ modulus \ of \ elasticity, \ 80x10° \ MPa; \ or } \newline \small{ = \ nominal \ dead \ load } \newline \small{I \ = \ second \ moment \ of \ area \ of \ a \ cross-section } \newline \small{I_{ey} \ = \ second \ moment \ of \ area \ of \ compression \ flange \ about \ the \ section \ minor } \newline \small{ principal \ y- \ axis } \newline \small{I_x \ = \ I \ about \ the \ cross-section \ major \ principal \ x-axis } \newline \small{I_y \ = \ I \ about \ the \ cross-section \ minor \ principal \ y-axis } \newline \small{J \ = \ torsion \ constant \ for \ a \ cross-secti } \newline \small{k_e \ = \ member \ effective \ length \ factor } \newline \small{k_f \ = \ form \ factor \ for \ members \ subject \ to \ axial \ compression } \newline \small{k_l \ = \ load \ height \ effective \ length \ factor } \newline \small{k_r \ = \ effective \ length \ factor \ for \ restraint \ against \ lateral \ rotation } \newline \small{l \ = \ span; \ or, } \newline \small{ = \ member \ length; \ or, } \newline \small{ = \ segment \ or \ sub-segment \ length } \newline \small{l_e/r \ = \ geometrical \ slenderness \ ratio } \newline \small{l_j \ = \ length \ of \ a \ bolted \ lap \ splice \ connection } \newline \small{M_b \ = \ nominal \ member \ moment \ capacity } \newline \small{M_{bx} \ = \ M_b \ about \ major \ principal \ x-axis } \newline \small{M_{cx} \ = \ lesser \ of \ M_{ix} \ and \ M_{ox} } \newline \small{M_o \ = \ reference \ elastic \ buckling \ moment \ for \ a \ member \ subject \ to \ bending } \newline \small{M_{oo} \ = \ reference \ elastic \ buckling \ moment \ obtained \ using \ /. \ = } \newline \small{M_{os} \ = \ M_{ob} \ for \ a \ segment, \ fully \ restrained \ at \ both \ ends, \ unrestrained \ against } \newline \small{ lateral \ rotation \ and \ loaded \ at \ shear \ centre } \newline \small{M_{ox} \ = \ nominal \ out-of-plane \ member \ moment \ capacity \ about \ major \ principal } \newline \small{ x-axis } \newline \small{M_{pr} \ = \ nominal \ plastic \ moment \ capacity \ reduced \ for \ axial \ force } \newline \small{M_{prx} \ = \ M_{pr} \ about \ major \ principal \ x-axis } \newline \small{M_{pry} \ = \ M_{pr} \ about \ minor \ principal \ y-axis } \newline \small{M_{rx} \ = \ M_s \ about \ major \ principal \ x-axis \ reduced \ by \ axial \ force } \newline \small{M_{ry} \ = \ M_s about \ minor \ principal \ y-axis \ reduced \ by \ axial \ force } \newline \small{M_s \ = \ nominal \ section \ moment \ capacity } \newline \small{M_{sx} \ = \ M_s \ about \ major \ principal \ x-axis } \newline \small{M_{sy} \ = \ M_s \ about \ the \ minor \ principal \ y-axis } \newline \small{M_{tx} \ = \ lesser \ of \ M_{rx} \ and \ M_{ox} } \newline \small{M^* \ = \ design \ bending \ moment } \newline \small{N_c \ = \ nominal \ member \ capacity \ in \ compression } \newline


Ncy = Nc for member bucking about minor principal yaxisNom = elastic flexural buckling load of a memberNomb = Nom for a braced memberNoms = Nom for a sway memberNs = nominal section capacity of a compression member; or= nominal section capacity for axial loadNt = nominal section capacity in tensionNtf = nominal tension capacity of a boltN = design axial force, tensile or compressivenei = numberof effective interfacesQ = nominal live loadRb = nominal bearing capacity of a webRbb = nominal bearing buckling capacityRby = nominal bearing yield capacityRsb = nominal buckling capacity ofa stifened webRsy = nominal yield capacity ofa stiffened webr = radius of gyrationry = radius of gyration about minor principle axis.S = plastic section moduluss = spacing of stiffenersSg = gauge of boltsSp = staggered pitch of boltst = thickness; or= thickness of thinner part joined; or= wall thickness of circular hollow section; or= thickness of an angle sectiontf = thickness of flangetp = thickness of a platets = thickness of a stiffenerty = thickness of a webtw, tw1, tw2, = size of a fillet weldVb = nominal bearing capacity of a ply or a pin; or= nominal shear buckling capacity of a webVf = nominal shear capacity ofa bolt or pin  strength limit stateVsf = nominal shear capacity of abot  serviceability limit stateVu = nominal shear capacity of a web with a uniform shear stress distributionVv = nominal shear capacity ofa webVvm = nominal web shear capacity in the presence of bending momentVw = nominal shear yield capacity of a web; or= nominal shear capacity of a pug or slot weld.V = design shear forceVb = design bearing force on a ply at a bolt or pin locatonVf = design shear force on a bolt or a pin   strength limit stateVw = design shear force acting on a web panelyo = ‘coordinate of shear centreZ = elastic section modulusZc = Ze for a compact sectionZe = effective section modulusαb = compression member section constantαc = compression member slenderness reduction factorαm = moment modification factor for bendingαs = slenderness reduction factorαv = shear buckling coefficient for a webβe = modifying factor to account for conditions at the far ends of beam= membersξ = compression member factor defined in Clause 6.3.3 of AS 4100η = compression member imperfection factor defined in Clause 6.3.3 of AS 4100λ = slenderness ratioλe = plate element slenderessλed = plate element deformation slendemess limitλep = plate element plasticity slendemess.λey = plate element yield slendemness limit\small{N_{cy} \ = \ N_c \ for \ member \ bucking \ about \ minor \ principal \ y-axis } \newline \small{N_{om} \ = \ elastic \ flexural \ buckling \ load \ of \ a \ member } \newline \small{N_{omb} \ = \ N_{om} \ for \ a \ braced \ member } \newline \small{N_{oms} \ = \ N_{om} \ for \ a \ sway \ member } \newline \small{N_s \ = \ nominal \ section \ capacity \ of \ a \ compression \ member; \ or } \newline \small{ = \ nominal \ section \ capacity \ for \ axial \ load } \newline \small{N_t \ = \ nominal \ section \ capacity \ in \ tension } \newline \small{N_{tf} \ = \ nominal \ tension \ capacity \ of \ a \ bolt } \newline \small{N^* \ = \ design \ axial \ force, \ tensile \ or \ compressive } \newline \small{n_{ei} \ = \ numberof \ effective \ interfaces } \newline \small{Q \ = \ nominal \ live \ load } \newline \small{R_b \ = \ nominal \ bearing \ capacity \ of \ a \ web } \newline \small{R_{bb} \ = \ nominal \ bearing \ buckling \ capacity } \newline \small{R_{by} \ = \ nominal \ bearing \ yield \ capacity } \newline \small{R_{sb} \ = \ nominal \ buckling \ capacity \ ofa \ stifened \ web } \newline \small{R_{sy} \ = \ nominal \ yield \ capacity \ ofa \ stiffened \ web } \newline \small{r \ = \ radius \ of \ gyration } \newline \small{r_y \ = \ radius \ of \ gyration \ about \ minor \ principle \ axis. } \newline \small{S \ = \ plastic \ section \ modulus } \newline \small{s \ = \ spacing \ of \ stiffeners } \newline \small{S_g \ = \ gauge \ of \ bolts } \newline \small{S_p \ = \ staggered \ pitch \ of \ bolts } \newline \small{t \ = \ thickness; \ or } \newline \small{ = \ thickness \ of \ thinner \ part \ joined; \ or } \newline \small{ = \ wall \ thickness \ of \ circular \ hollow \ section; \ or } \newline \small{ = \ thickness \ of \ an \ angle \ section } \newline \small{t_f \ = \ thickness \ of \ flange } \newline \small{t_p \ = \ thickness \ of \ a \ plate } \newline \small{t_s \ = \ thickness \ of \ a \ stiffener } \newline \small{ty \ = \ thickness \ of \ a \ web } \newline \small{t_w, \ t_{w1}, \ t_{w2}, \ = \ size \ of \ a \ fillet \ weld } \newline \small{V_b \ = \ nominal \ bearing \ capacity \ of \ a \ ply \ or \ a \ pin; \ or } \newline \small{ = \ nominal \ shear \ buckling \ capacity \ of \ a \ web } \newline \small{V_f \ = \ nominal \ shear \ capacity \ ofa \ bolt \ or \ pin \ - \ strength \ limit \ state } \newline \small{V_{sf} \ = \ nominal \ shear \ capacity \ of \ abot \ - \ serviceability \ limit \ state } \newline \small{V_u \ = \ nominal \ shear \ capacity \ of \ a \ web \ with \ a \ uniform \ shear \ stress \ distribution } \newline \small{V_v \ = \ nominal \ shear \ capacity \ ofa \ web } \newline \small{V_{vm} \ = \ nominal \ web \ shear \ capacity \ in \ the \ presence \ of \ bending \ moment } \newline \small{V_w \ = \ nominal \ shear \ yield \ capacity \ of \ a \ web; \ or } \newline \small{ = \ nominal \ shear \ capacity \ of \ a \ pug \ or \ slot \ weld. } \newline \small{V^* \ = \ design \ shear \ force } \newline \small{V^*_b \ = \ design \ bearing \ force \ on \ a \ ply \ at \ a \ bolt \ or \ pin \ locaton } \newline \small{V^*_f \ = \ design \ shear \ force \ on \ a \ bolt \ or \ a \ pin \ ~ \ strength \ limit \ state } \newline \small{V^*_w \ = \ design \ shear \ force \ acting \ on \ a \ web \ panel } \newline \small{y_o \ = \ ‘coordinate \ of \ shear \ centre } \newline \small{Z \ = \ elastic \ section \ modulus } \newline \small{Z_c \ = \ Z_e \ for \ a \ compact \ section } \newline \small{Z_e \ = \ effective \ section \ modulus } \newline \small{\alpha_b\ = \ compression \ member \ section \ constant } \newline \small{\alpha_c\ = \ compression \ member \ slenderness \ reduction \ factor } \newline \small{\alpha_m\ = \ moment \ modification \ factor \ for \ bending } \newline \small{\alpha_s\ = \ slenderness \ reduction \ factor } \newline \small{\alpha_v\ = \ shear \ buckling \ coefficient \ for \ a \ web } \newline \small{\beta_e \ = \ modifying \ factor \ to \ account \ for \ conditions \ at \ the \ far \ ends \ of \ beam } \newline \small{ = \ members } \newline \small{\xi \ = \ compression \ member \ factor \ defined \ in \ Clause \ 6.3.3 \ of \ AS \ 4100 } \newline \small{\eta \ = \ compression \ member \ imperfection \ factor \ defined \ in \ Clause \ 6.3.3 \ of \ AS \ 4100 } \newline \small{\lambda \ = \ slenderness \ ratio } \newline \small{\lambda_e \ = \ plate \ element \ slenderess } \newline \small{\lambda_{ed} \ = \ plate \ element \ deformation \ slendemess \ limit } \newline \small{\lambda_{ep} \ = \ plate \ element \ plasticity \ slendemess. } \newline \small{\lambda_{ey} \ = \ plate \ element \ yield \ slendemness \ limit } \newline




Calculation

Assumptions

  1. Does not account for penetrations or holes, therefore
    
    
  2. Does not do a shear check or biaxial bending check
  1. Input standard steel sections for Universal Beam (UB), Universal Column (UC), Rectangular Hollow Section (RHS), Square Hollow Section (SHS), Circular Hollow Section (CHS), Equal Angle (EA), Unequal Angle (UA), Parallel Flange Channel (PFC) and Tapered Flange Channel (TFC) are as per Liberty Steel 9th Edition catalogue (2019)
  1. Input standard sections for Welded Beams (WB) and Welded Columns (WC) are as per Liberty Steel catalogue 7th Edition catalogue (2014) following AS/NZS 3679.2-400 (as opposed to 300PLUS® welded sections which are produced to exceed the minimum requirements of AS/NZS 3679.2-300).
  1. EA is as per x-axis and y-axis (load B)
  1. UA is as per n-axis and p-axis
  1. PFC is as per x-axis and y-axis (load A)


Inputs

Steel Properties



Section
:360 UB 50.7



fy
:320MPa



L
:5 m



Loads



M*x
:{"mathjs":"Unit","value":20,"unit":"kN m","fixPrefix":false}



M*y
:10



V*x
:{"mathjs":"Unit","value":50,"unit":"kN","fixPrefix":false}



V*y
:{"mathjs":"Unit","value":50,"unit":"kN","fixPrefix":false}



N*
:45kN

👉N* (+) = compression, N* (-) = tension


Modification Factors

Compression factors:


ke,x
:1



ke,y
:1


Flexural factors:


kt
:1




kl
:1




kr
:1



Output

Section Properties

Geometric properties:


dp
:356mm



tw
:7.3mm



bf
:171mm



tf
:11.5mm



Ag
:6470mm2



rx
:148mm



ry
:38.5mm


Compression properties:


kf
:0.963


Flexural properties:


Compactness
:C



Zex
:897000mm3



Zey
:168000mm3



Ixx
:142000000mm4



Iyy
:9600000mm4



J
:241000mm4



Iw
:284000000000mm4



Member Properties

Compression properties:


Le,x
:5000mm



Le,y
:5000mm



λn,x
:37.508



λn,y
:144.19



αa,x
:17.49



αa,y
:13.30



αb
:0



λ,x
:37.508



λ,y
:144.19


Flexural properties:


Le
:5000mm



Mo
:177.8kN m


Capacity checks



Φ
:0.9


Compression Capacity


Ns=kfAnfyCl 6.2.1Nc=αcNsCl 6.3.3N_{s} = k_fA_nf_y \hspace{1cm}\text{Cl 6.2.1}\\N_{c} = \alpha_cN_s\hspace{1cm}\text{Cl 6.3.3}


Ns
:1994kN

Major axis


αc,x
:0.915



Nc,x
:1824



φNc,x
:1642kN



N* < φNc,x
:PASS

Minor axis


αc,y
:0.31



Nc,y
:626



φNc,y
:563kN



N* < φNc,y
:PASS



Flexural Capacity


Ms=fyZeCl 5.2.1Mb=αsαmMsCl 5.6.1.1M_{s} = f_y Z_e \hspace{1cm}\text{Cl 5.2.1}\\ M_{b} = \alpha_s \alpha_m M_s \hspace{1cm}\text{Cl 5.6.1.1}
Major axis


Ms,x
:287kN m

Minor Axis


Ms,y
:54kN m



αs
:0.45



αm
:1



Mb
:129.74396517597089



φMb
:117kN m



M*x < φMb
:PASS

👉Note, Mb,x = Mb,y hence a single Mb is reported


Combined Compression and Bending - Section Capacity


Mr=Ms(1NϕNs)Cl 8.3.2 & Cl 8.3.3\\M_{r}=M_{s}\big(1-\dfrac{N^*}{\phi N_s}\big)\hspace{1cm}\text{Cl 8.3.2 \& Cl 8.3.3}
Major axis


φMr,x
:252kN m



M*x < φMr,x
:PASS

Minor axis


φMr,y
:47kN m



M*y < φMr,y
:PASS



Combined Compression and Bending - In-plane Member Capacity


Mi=Ms(1NϕNs)Cl 8.4.2.2M_{i}=M_s\big( 1-\dfrac{N^*}{\phi N_{s}}\big)\hspace{1cm}\text{Cl 8.4.2.2}
Major Axis


φMi.x
:251kN m



M*x < φMi,x
:PASS

Minor Axis


φMi,y
:45kN m



M*y < φMi,y
:PASS



Combined Axial and Bending - Out-of-Plane Member Capacity


Mox=Mbx(1NϕNcy)Cl 8.4.4.1M_{ox}=M_{bx}\big(1-\dfrac{N^*}{\phi N_{cy}}\big) \hspace{1cm}\text{Cl 8.4.4.1}


φMo.x
:106kN m



M*x < φMo,x
:PASS



Explanation

Steel is commonly used to construct building frames, including columns, beams and trusses. These elements provide the necessary structural support for the building. Steel's high strength-to-weight ratio, durability and ductility make it an ideal material for various applications.
Ultimate Limit State (ULS) design for steel includes the following checks against failure phenomena.

Compression Check

Section capacity, Ns checks against compressive yielding (squashing) and local buckling.

Ns=kfAnfyCl 6.2.1N_{s} = k_fA_nf_y\hspace{1cm}\text{Cl 6.2.1}
  1. Only 'stocky' compression members fail by yielding, that is, to have a slenderness ratio l/r < 25 approximately.
  2. The form factor is the ratio of the effective to the gross area of the section. If the local buckling form factor, kf = 1.0 then yielding will occur before local buckling, if kf < 1.0 then local buckling will occur before yielding.
Member capacity, Nc checks against flexural buckling (or column buckling or Euler buckling).

Nc=αcNsCl 6.3.3N_{c} = \alpha_cN_s\hspace{1cm}\text{Cl 6.3.3}
  1. Flexural buckling can only occur in slender compression members, that is, when l/r >= 25 approximately.
  2. The theoretical buckling load, Nom, is given by the Euler Equation. The slenderness reduction factor, αc reduces the Euler equation to account for residual stresses and imperfections.
Flexural (Euler) Buckling


Flexural Check

Section capacity, Ms checks against yielding and local buckling of the compression flange or compression part of web.

Ms=fyZeCl 5.2.1M_{s} = f_y Z_e \hspace{1cm}\text{Cl 5.2.1}
  1. Effective section modulus, Ze is based on the slenderness classification of a section as either 'slender', 'compact' or 'non-compact'. The classification is used to understand whether the elastic or plastic material limits should be used. Slender sections should use an elastic approach to prevent buckling, whereas a compact section is allowed to develop full plastic capacity. All standard UB and UC sections have been sized such that they not slender.
Section behaviour based on slenderness classification

Member capacity, Mb checks against flexural-torsional buckling which is where the beam bends in it's minor axis and twists, as this behaviour is the least stiff bending failure.

Mb=αsαmMsCl 5.6.1.1\\ M_{b} = \alpha_s \alpha_m M_s\hspace{1cm}\text{Cl 5.6.1.1}
  1. The elastic flexural-torsional buckling equation, Mo assumes a perfectly elastic and perfectly straight member with a uniform bending moment. The moment modification factor, αm and the slenderness reduction factor, αs reduces the equation to account for non-uniform bending moment and to account for how restraints impact deformations, respectively.
  2. Flexural-torsional buckling won't occur in minor-axis bending as it is already bending in the less stiff axis and it won't occur in CHS or SHS sections since Ix and Iy are equal from symmetry.
Flexural-torsional Buckling


Comparison of Steel and Concrete

Property

Density
Tensile strength
Compressive strength
Failure mechanism
Construction cost
Fire resistance

Durability

Concrete

2,400 kg/m3
2-5MPa


20-50MPa


Brittle
Generally lower
Inherent in cover

Inherent in cover

Steel

7,850 kg/m3
~440MPa


~300MPa


Ductile
Generally higher
Not inherent, needs intumescent paint
Subject to weather and rust

Related Content

  1. Steel Beam and Column Designer to AISC 360
  1. Steel Section Designer to EC3

Check out our library of engineering tools here!