Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🎖️
Bounty Program
🌵
CalcTree
Using this calculator you can visualise the shear force, bending moment and deflection of a simply supported beam when a point moment is applied at a distance 'a' from the left support.

Calculator

Applied moment is positive (+) in the clockwise direction.

Inputs

Geometry and Loading


Length of beam, L
:8.00m


Distance from left support to Moment, a
:2.00m


Magnitude of applied moment, M0
:-6.00kN m
Beam Properties


Elastic Modulus, E
:200.00GPa


Second Moment of Inertia, I
:142,000,000.00mm4
Simply Supported Beam with Point Moment

Free body diagram


Outputs



MaxShear
:0.50kN


MaxMoment
:-3.00kN m


MaxDeflection
:0.424mm
Can’t display the image because of an internal error. Our team is looking at the issue.



Explanation

Using Macaulay's Theorem and the Double Integration Method, we can create the equations for shear force, bending moment and deflection as follows:
  1. Shear Force

V(x)=Ra<x0>0+M0<xa>1=Ra<x0>0V(x) = R_a<x-0>^{0} + M_0<x-a>^{-1}\\= R_a<x-0>^{0}
  1. Bending Moment

M(x)=Ra<x0>1+M0<xa>0M(x) = R_a<x-0>^{1} + M_0<x-a>^{0}
  1. Deflection

Y(x)=1EI[Ra6<x0>3+M02<xa>2+C1x]whereC1=[Ra6L2+M0(La)22L]Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{M_0}{2}<x-a>^{2} +\hspace{0.1cm} C_{1}x] \\ \text{where}\hspace{0.3cm} C_1 = -[ \frac{R_a}{6}L^{2} + \frac{M_0(L-a)^{2}}{2L}]
Want to know how to derive these formulas? Keep reading!

Derivation

Step 1: Find the beam support reactions by taking moments at each end.
Free body diagram for Macaulay's Theorem


ΣM@x=L=0Ra×L=M0Ra=M0L\Sigma M_{@x=L} = 0 \\ R_a \times L = -M_0 \\ R_a = \frac{-M_0}{L}

ΣM@x=0=0Rb×L=M0Rb=MoL\Sigma M_{@x=0} = 0 \\ R_b \times L = M_0 \\ R_b = \frac{M_o}{L}
Step 2: Find the shear force

and bending moment

equations by using the table of Macaulay's Singularity Functions on the homepage. There will be two terms in both

and

equations since there is

reaction force at

and

applied force at

.
Note:



V(x)=Ra<x0>0+M0<xa>1=Ra<x0>0V(x) = R_a<x-0>^{0} + M_0<x-a>^{-1}\\=R_a<x-0>^{0}

M(x)=Ra<x0>1+M0<xa>0M(x) = R_a<x-0>^{1} + M_0<x-a>^{0}
Step 3: Perform the Double Integration Method to find the deflection equation.
  1. Integrate the Bending moment equations once to get the Slope Equation.

θ(x)=1EIM(x)dxθ(x)=1EI[Ra2<x0>2+M0<xa>1+C1]\theta(x) = \frac{1}{EI}\int M(x) \hspace{0.1cm} dx \\ \theta(x) = \frac{1}{EI} [\frac{R_a}{2}<x-0>^{2} + {M_0}<x-a>^{1} +\hspace{0.1cm} C_{1}]
  1. Integrate the Slope Equation to find the Deflection Equation.

Y(x)=1EIθ(x)dxY(x)=1EI[Ra6<x0>3+M02<xa>2+C1x+C2]Y(x) = \frac{1}{EI}\int \theta(x) \hspace{0.1cm} dx \\ Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{M_0}{2}<x-a>^{2} +\hspace{0.1cm} C_{1}x +\hspace{0.1cm} C_{2}]
  1. Apply the Boundary Conditions to find the constants
    
    and
    
    

BC 1: @ x=0, Y(x)=00=1EI[Ra6<00>3+M02<0a>2+C1(0)+C2]0=1EI[0+0+0+C2]C2=0\text{BC 1: @ x=0, Y(x)=0} \\ 0 =\frac{1}{EI}[ \frac{R_a}{6}<0-0>^{3} + \frac{M_0}{2}<0-a>^{2} +\hspace{0.1cm} C_{1}(0) +\hspace{0.1cm} C_{2}] \\ 0 = \frac{1}{EI}[0+0+0+C_2] \\ C_2 = 0

BC 2: @ x=L, Y(x)=00=1EI[Ra6<L0>3+M02<La>2+C1L]C1=[Ra6L2+M0(La)22L]\text{BC 2: @ x=L, Y(x)=0} \\ 0 =\frac{1}{EI}[ \frac{R_a}{6}<L-0>^{3} + \frac{M_0}{2}<L-a>^{2} +\hspace{0.1cm} C_{1}L] \\ C_1 = -[ \frac{R_a}{6}L^{2} + \frac{M_0(L-a)^{2}}{2L}]
After substituting the constant

, your final Deflection equation becomes:

Y(x)=1EI[Ra6<x0>3+M02<xa>2+C1x]whereC1=[Ra6L2+M0(La)22L]Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{M_0}{2}<x-a>^{2} +\hspace{0.1cm} C_{1}x] \\ \text{where}\hspace{0.3cm} C_1 = -[ \frac{R_a}{6}L^{2} + \frac{M_0(L-a)^{2}}{2L}]
You are now ready to plot the curves to determine the overall shear force, bending moment and deflection of a simply supported beam with an applied moment!