Using this calculator you can visualise the shear force, bending moment and deflection of a simply supported beam when a trapezoidal load is applied spanning distance 'a' to 'b' from the left support.
Calculations Applied force is negative (-) in the downwards direction.
Simply supported beam with trapezoidal load
Simply supported beam with trapezoidal load
Inputs Length of beam, Distance from left support to the zero load end, Distance from left support to the maximum load end, Magnitude of minimum load, Magnitude of maximum load,
Elastic Modulus, Second Moment of Inertia,
Outputs Note, self-weight loading is excluded.
Resultant force of trapezoidal load, Span of load, Distance, Distance,
Maximum Forces and Deflection
Max Deflection
: -91.83 mm
Can’t display the image because of an internal error. Our team is looking at the issue.
Explanation Using Macaulay's Theorem and the Double Integration Method, we can create the equations for shear force, bending moment and deflection as follows:
Shear Force i) Type 1 loading condition:
V ( x ) = R a < x − 0 > 0 + F 1 < x − a > 1 + F 2 − F 1 2 d < x − a > 2 − F 2 < x − b > 1 − F 2 − F 1 2 d < x − b > 2 V(x) = R_a<x-0>^{0} + {F_1}<x-a>^{1} + \frac{F_2 - F_1}{2d}<x-a>^{2} - {F_2}<x-b>^{1} - \frac{F_2 - F_1}{2d}<x-b>^{2} V ( x ) = R a < x − 0 > 0 + F 1 < x − a > 1 + 2 d F 2 − F 1 < x − a > 2 − F 2 < x − b > 1 − 2 d F 2 − F 1 < x − b > 2 ii) Type 2 loading condition:
V ( x ) = R b < x − 0 > 0 + F 1 < x − c > 1 + F 2 − F 1 2 d < x − c > 2 − F 2 < x − e > 1 − F 2 − F 1 2 d < x − e > 2 V(x) = R_b<x-0>^{0} + {F_1}<x-c>^{1} + \frac{F_2 - F_1}{2d}<x-c>^{2} - {F_2}<x-e>^{1} - \frac{F_2 - F_1}{2d}<x-e>^{2} V ( x ) = R b < x − 0 > 0 + F 1 < x − c > 1 + 2 d F 2 − F 1 < x − c > 2 − F 2 < x − e > 1 − 2 d F 2 − F 1 < x − e > 2 Bending Moment i) Type 1 loading condition:
M ( x ) = R a < x − 0 > 1 + F 1 2 < x − a > 2 + F 2 − F 1 6 d < x − a > 3 − F 2 2 < x − b > 2 − F 2 − F 1 6 d < x − b > 3 M(x) = R_a<x-0>^{1} + \frac{F_1}{2}<x-a>^{2} + \frac{F_2 - F_1}{6d}<x-a>^{3} - \frac{F_2}{2}<x-b>^{2} - \frac{F_2 - F_1}{6d}<x-b>^{3} M ( x ) = R a < x − 0 > 1 + 2 F 1 < x − a > 2 + 6 d F 2 − F 1 < x − a > 3 − 2 F 2 < x − b > 2 − 6 d F 2 − F 1 < x − b > 3 ii) Type 2 loading condition:
M ( x ) = R b < x − 0 > 1 + F 1 2 < x − c > 2 + F 2 − F 1 6 d < x − c > 3 − F 2 2 < x − e > 2 − F 2 − F 1 6 d < x − e > 3 M(x) = R_b<x-0>^{1} + \frac{F_1}{2}<x-c>^{2} + \frac{F_2 - F_1}{6d}<x-c>^{3} - \frac{F_2}{2}<x-e>^{2} - \frac{F_2 - F_1}{6d}<x-e>^{3} M ( x ) = R b < x − 0 > 1 + 2 F 1 < x − c > 2 + 6 d F 2 − F 1 < x − c > 3 − 2 F 2 < x − e > 2 − 6 d F 2 − F 1 < x − e > 3 Deflection i) Type 1 loading condition:
Y ( x ) = 1 E I [ R a 6 < x − 0 > 3 + F 1 24 < x − a > 4 + F 2 − F 1 120 d < x − a > 5 − F 2 24 < x − b > 4 − F 2 − F 1 120 d < x − b > 5 + C 1 x ] where C 1 = − [ R a L 2 6 + F 1 ( L − a ) 4 24 L + ( F 2 − F 1 ) ( L − a ) 5 120 L d − F 2 ( L − b ) 4 24 L − ( F 2 − F 1 ) ( L − b ) 5 120 L d ] Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F_1}{24}<x-a>^{4} + \frac{F_2-F_1}{120d}<x-a>^{5} - \frac{F_2}{24}<x-b>^{4} - \frac{F_2-F_1}{120d}<x-b>^{5} + \hspace{0.1cm}C_1x] \\ \text{where} \hspace{0.3cm} C_1 =-[\frac{R_aL^2}{6} + \frac{F_1(L-a)^4}{24L} + \frac{(F_2-F_1)(L-a)^5}{120Ld} - \frac{F_2(L-b)^4}{24L} - \frac{(F_2-F_1)(L-b)^5}{120Ld}] Y ( x ) = E I 1 [ 6 R a < x − 0 > 3 + 24 F 1 < x − a > 4 + 120 d F 2 − F 1 < x − a > 5 − 24 F 2 < x − b > 4 − 120 d F 2 − F 1 < x − b > 5 + C 1 x ] where C 1 = − [ 6 R a L 2 + 24 L F 1 ( L − a ) 4 + 120 L d ( F 2 − F 1 ) ( L − a ) 5 − 24 L F 2 ( L − b ) 4 − 120 L d ( F 2 − F 1 ) ( L − b ) 5 ] ii) Type 2 loading condition:
Y ( x ) = 1 E I [ R b 6 < x − 0 > 3 + F 1 24 < x − c > 4 + F 2 − F 1 120 d < x − c > 5 − F 2 24 < x − e > 4 − F 2 − F 1 120 d < x − e > 5 + C 1 x ] where C 1 = − [ R b L 2 6 + F 1 ( L − c ) 4 24 L + ( F 2 − F 1 ) ( L − c ) 5 120 L d − F 2 ( L − e ) 4 24 L − ( F 2 − F 1 ) ( L − e ) 5 120 L d ] Y(x) =\frac{1}{EI}[ \frac{R_b}{6}<x-0>^{3} + \frac{F_1}{24}<x-c>^{4} + \frac{F_2-F_1}{120d}<x-c>^{5} - \frac{F_2}{24}<x-e>^{4} - \frac{F_2-F_1}{120d}<x-e>^{5} + \hspace{0.1cm}C_1x] \\ \text{where} \hspace{0.3cm} C_1 =-[\frac{R_bL^2}{6} + \frac{F_1(L-c)^4}{24L} + \frac{(F_2-F_1)(L-c)^5}{120Ld} - \frac{F_2(L-e)^4}{24L} - \frac{(F_2-F_1)(L-e)^5}{120Ld}] Y ( x ) = E I 1 [ 6 R b < x − 0 > 3 + 24 F 1 < x − c > 4 + 120 d F 2 − F 1 < x − c > 5 − 24 F 2 < x − e > 4 − 120 d F 2 − F 1 < x − e > 5 + C 1 x ] where C 1 = − [ 6 R b L 2 + 24 L F 1 ( L − c ) 4 + 120 L d ( F 2 − F 1 ) ( L − c ) 5 − 24 L F 2 ( L − e ) 4 − 120 L d ( F 2 − F 1 ) ( L − e ) 5 ] Want to know how to derive the equations? Keep reading!
Derivation Step 1: Find the beam support reactions by taking moments at each end.
Simply supported beam with trapezoidal load
Simply supported beam with trapezoidal load
Distance formulas for Type 1
Distance formulas for Type 2
Beam support reactions (same for Type 1 and Type 2):
Σ M @ x = 0 = 0 R b × L = − w × f R b = − w × f L where: w = 1 2 ( F 1 + F 2 ) d \Sigma M_{@x=0} = 0 \\ R_b\times L= -w\times f \\ R_b = \frac{-w\times f}{L}\\\text{where: } w = \frac{1}{2}(F_1+F_2)d Σ M @ x = 0 = 0 R b × L = − w × f R b = L − w × f where: w = 2 1 ( F 1 + F 2 ) d
Σ M @ x = L = 0 R a × L = − w × g R a = − w × g L where: w = 1 2 ( F 1 + F 2 ) d \Sigma M_{@x=L} = 0 \\ R_a\times L= -w\times g \\ R_a = \frac{-w\times g}{L}\\\text{where: } w = \frac{1}{2}(F_1+F_2)d Σ M @ x = L = 0 R a × L = − w × g R a = L − w × g where: w = 2 1 ( F 1 + F 2 ) d
Step 2: Find the shear force and bending moment equations by using the table of Macaulay's Singularity Functions on the homepage . Because the load is not applied up to an end of the beam, there are a few extra steps to consider: Change the FBD so that the load does a wrap-around the beam and stops at the from the wall on the underside of the beam Cut a section 'A' just before the right support reaction Apply Macaulay's Theorem as normal to get the and equations considering only the forces present on the left side of the section cut Find slope, given by:
m = y 2 − y 1 x 2 − x 1 = F 2 − F 1 b − a = F 2 − F 1 d m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{F_2-F_1}{b-a} = \dfrac{F_2 - F_1}{d} m = x 2 − x 1 y 2 − y 1 = b − a F 2 − F 1 = d F 2 − F 1 Free body diagram adjusted for Macaulay's Theorem
Free body diagram adjusted for Macaulay's Theorem
Type 1 loading condition:
V ( x ) = R a < x − 0 > 0 + F 1 < x − a > 1 + F 2 − F 1 2 d < x − a > 2 − F 2 < x − b > 1 − F 2 − F 1 2 d < x − b > 2 V(x) = R_a<x-0>^{0} + {F_1}<x-a>^{1} + \frac{F_2 - F_1}{2d}<x-a>^{2} - {F_2}<x-b>^{1} - \frac{F_2 - F_1}{2d}<x-b>^{2} V ( x ) = R a < x − 0 > 0 + F 1 < x − a > 1 + 2 d F 2 − F 1 < x − a > 2 − F 2 < x − b > 1 − 2 d F 2 − F 1 < x − b > 2
M ( x ) = R a < x − 0 > 1 + F 1 2 < x − a > 2 + F 2 − F 1 6 d < x − a > 3 − F 2 2 < x − b > 2 − F 2 − F 1 6 d < x − b > 3 M(x) = R_a<x-0>^{1} + \frac{F_1}{2}<x-a>^{2} + \frac{F_2 - F_1}{6d}<x-a>^{3} - \frac{F_2}{2}<x-b>^{2} - \frac{F_2 - F_1}{6d}<x-b>^{3} M ( x ) = R a < x − 0 > 1 + 2 F 1 < x − a > 2 + 6 d F 2 − F 1 < x − a > 3 − 2 F 2 < x − b > 2 − 6 d F 2 − F 1 < x − b > 3 Type 2 loading condition:
V ( x ) = R b < x − 0 > 0 + F 1 < x − c > 1 + F 2 − F 1 2 d < x − c > 2 − F 2 < x − e > 1 − F 2 − F 1 2 d < x − e > 2 V(x) = R_b<x-0>^{0} + {F_1}<x-c>^{1} + \frac{F_2 - F_1}{2d}<x-c>^{2} - {F_2}<x-e>^{1} - \frac{F_2 - F_1}{2d}<x-e>^{2} V ( x ) = R b < x − 0 > 0 + F 1 < x − c > 1 + 2 d F 2 − F 1 < x − c > 2 − F 2 < x − e > 1 − 2 d F 2 − F 1 < x − e > 2
M ( x ) = R b < x − 0 > 1 + F 1 2 < x − c > 2 + F 2 − F 1 6 d < x − c > 3 − F 2 2 < x − e > 2 − F 2 − F 1 6 d < x − e > 3 M(x) = R_b<x-0>^{1} + \frac{F_1}{2}<x-c>^{2} + \frac{F_2 - F_1}{6d}<x-c>^{3} - \frac{F_2}{2}<x-e>^{2} - \frac{F_2 - F_1}{6d}<x-e>^{3} M ( x ) = R b < x − 0 > 1 + 2 F 1 < x − c > 2 + 6 d F 2 − F 1 < x − c > 3 − 2 F 2 < x − e > 2 − 6 d F 2 − F 1 < x − e > 3 Step 3 : Perform the Double Integration Method to find the deflection equation.
Integrate the Bending moment equations once to get the Slope Equation.
θ ( x ) = 1 E I ∫ M ( x ) d x \theta(x) = \frac{1}{EI}\int M(x) \hspace{0.1cm} dx θ ( x ) = E I 1 ∫ M ( x ) d x i) Type 1 loading condition:
θ ( x ) = 1 E I [ R a 2 < x − 0 > 2 + F 1 6 < x − a > 3 + F 2 − F 1 24 d < x − a > 4 − F 2 6 < x − b > 3 − F 2 − F 1 24 d < x − b > 4 + C 1 \theta(x) =\frac{1}{EI}[ \frac{R_a}{2}<x-0>^{2} + \frac{F_1}{6}<x-a>^{3} + \frac{F_2-F_1}{24d}<x-a>^{4} - \frac{F_2}{6}<x-b>^{3} - \frac{F_2-F_1}{24d}<x-b>^{4} + \hspace{0.1cm}C_1 θ ( x ) = E I 1 [ 2 R a < x − 0 > 2 + 6 F 1 < x − a > 3 + 24 d F 2 − F 1 < x − a > 4 − 6 F 2 < x − b > 3 − 24 d F 2 − F 1 < x − b > 4 + C 1 ii) Type 2 loading condition:
θ ( x ) = 1 E I [ R b 2 < x − 0 > 2 + F 1 6 < x − c > 3 + F 2 − F 1 24 d < x − c > 4 − F 2 6 < x − e > 3 − F 2 − F 1 24 d < x − e > 4 + C 1 \theta(x) =\frac{1}{EI}[ \frac{R_b}{2}<x-0>^{2} + \frac{F_1}{6}<x-c>^{3} + \frac{F_2-F_1}{24d}<x-c>^{4} - \frac{F_2}{6}<x-e>^{3} - \frac{F_2-F_1}{24d}<x-e>^{4} + \hspace{0.1cm}C_1 θ ( x ) = E I 1 [ 2 R b < x − 0 > 2 + 6 F 1 < x − c > 3 + 24 d F 2 − F 1 < x − c > 4 − 6 F 2 < x − e > 3 − 24 d F 2 − F 1 < x − e > 4 + C 1 Integrate the Slope Equation to find the Deflection Equation.
Y ( x ) = 1 E I ∫ θ ( x ) d x Y(x) = \frac{1}{EI}\int \theta(x) \hspace{0.1cm} dx Y ( x ) = E I 1 ∫ θ ( x ) d x i) Type 1 loading condition:
Y ( x ) = 1 E I [ R a 6 < x − 0 > 3 + F 1 24 < x − a > 4 + F 2 − F 1 120 d < x − a > 5 − F 2 24 < x − b > 4 − F 2 − F 1 120 d < x − b > 5 + C 1 x + C 2 ] Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F_1}{24}<x-a>^{4} + \frac{F_2-F_1}{120d}<x-a>^{5} - \frac{F_2}{24}<x-b>^{4} - \frac{F_2-F_1}{120d}<x-b>^{5} + \hspace{0.1cm}C_1x + C_2] Y ( x ) = E I 1 [ 6 R a < x − 0 > 3 + 24 F 1 < x − a > 4 + 120 d F 2 − F 1 < x − a > 5 − 24 F 2 < x − b > 4 − 120 d F 2 − F 1 < x − b > 5 + C 1 x + C 2 ] ii) Type 2 loading condition:
Y ( x ) = 1 E I [ R b 6 < x − 0 > 3 + F 1 24 < x − c > 4 + F 2 − F 1 120 d < x − c > 5 − F 2 24 < x − e > 4 − F 2 − F 1 120 d < x − e > 5 + C 1 x + C 2 ] Y(x) =\frac{1}{EI}[ \frac{R_b}{6}<x-0>^{3} + \frac{F_1}{24}<x-c>^{4} + \frac{F_2-F_1}{120d}<x-c>^{5} - \frac{F_2}{24}<x-e>^{4} - \frac{F_2-F_1}{120d}<x-e>^{5} + \hspace{0.1cm}C_1x + C_{2}] Y ( x ) = E I 1 [ 6 R b < x − 0 > 3 + 24 F 1 < x − c > 4 + 120 d F 2 − F 1 < x − c > 5 − 24 F 2 < x − e > 4 − 120 d F 2 − F 1 < x − e > 5 + C 1 x + C 2 ] Apply the Boundary Conditions to find the constants and i) Type 1 loading condition:
BC 1: @ x=0, Y(x)=0 0 = 1 E I [ R a 6 < 0 − 0 > 3 + F 1 24 < 0 − a > 4 + F 2 − F 1 120 d < 0 − a > 5 − F 2 24 < 0 − b > 4 − F 2 − F 1 120 d < 0 − b > 5 + C 1 ( 0 ) + C 2 ] 0 = 1 E I [ 0 + 0 + 0 + 0 + 0 + 0 + C 2 ] C 2 = 0 \text{BC 1: @ x=0, Y(x)=0} \\ 0 =\frac{1}{EI}[ \frac{R_a}{6}<0-0>^{3} + \frac{F_1}{24}<0-a>^{4} + \frac{F_2-F_1}{120d}<0-a>^{5} - \frac{F_2}{24}<0-b>^{4} - \frac{F_2-F_1}{120d}<0-b>^{5} +\hspace{0.1cm} C_{1}(0) +\hspace{0.1cm} C_{2}] \\0=\frac{1}{EI}[ 0 + 0 + 0 + 0 + 0 + 0 +C_{2}] \\ C_{2}= 0 BC 1: @ x=0, Y(x)=0 0 = E I 1 [ 6 R a < 0 − 0 > 3 + 24 F 1 < 0 − a > 4 + 120 d F 2 − F 1 < 0 − a > 5 − 24 F 2 < 0 − b > 4 − 120 d F 2 − F 1 < 0 − b > 5 + C 1 ( 0 ) + C 2 ] 0 = E I 1 [ 0 + 0 + 0 + 0 + 0 + 0 + C 2 ] C 2 = 0
BC 2: @ x=L, Y(x)=0 0 = 1 E I [ R a 6 < L − 0 > 3 + F 1 24 < L − a > 4 + F 2 − F 1 120 d < L − a > 5 − F 2 24 < L − b > 4 − F 2 − F 1 120 d < L − b > 5 + C 1 L ] 0 = 1 E I [ R a L 3 6 + F 1 ( L − a ) 4 24 + ( F 2 − F 1 ) ( L − a ) 5 120 d − F 2 ( L − b ) 4 24 − ( F 2 − F 1 ) ( L − b ) 5 120 d + C 1 L ] C 1 = − [ R a L 2 6 + F 1 ( L − a ) 4 24 L + ( F 2 − F 1 ) ( L − a ) 5 120 L d − F 2 ( L − b ) 4 24 L − ( F 2 − F 1 ) ( L − b ) 5 120 L d ] \text{BC 2: @ x=L, Y(x)=0} \\ 0 =\frac{1}{EI}[ \frac{R_a}{6}<L-0>^{3} + \frac{F_1}{24}<L-a>^{4} + \frac{F_2-F_1}{120d}<L-a>^{5} - \frac{F_2}{24}<L-b>^{4} - \frac{F_2-F_1}{120d}<L-b>^{5} + \hspace{0.1cm}C_1L] \\ 0=\frac{1}{EI}[\frac{R_aL^3}{6} + \frac{F_1(L-a)^4}{24} + \frac{(F_2-F_1)(L-a)^5}{120d} - \frac{F_2(L-b)^4}{24} - \frac{(F_2-F_1)(L-b)^5}{120d} +C_{1}L] \\ C_1 =-[\frac{R_aL^2}{6} + \frac{F_1(L-a)^4}{24L} + \frac{(F_2-F_1)(L-a)^5}{120Ld} - \frac{F_2(L-b)^4}{24L} - \frac{(F_2-F_1)(L-b)^5}{120Ld}] BC 2: @ x=L, Y(x)=0 0 = E I 1 [ 6 R a < L − 0 > 3 + 24 F 1 < L − a > 4 + 120 d F 2 − F 1 < L − a > 5 − 24 F 2 < L − b > 4 − 120 d F 2 − F 1 < L − b > 5 + C 1 L ] 0 = E I 1 [ 6 R a L 3 + 24 F 1 ( L − a ) 4 + 120 d ( F 2 − F 1 ) ( L − a ) 5 − 24 F 2 ( L − b ) 4 − 120 d ( F 2 − F 1 ) ( L − b ) 5 + C 1 L ] C 1 = − [ 6 R a L 2 + 24 L F 1 ( L − a ) 4 + 120 L d ( F 2 − F 1 ) ( L − a ) 5 − 24 L F 2 ( L − b ) 4 − 120 L d ( F 2 − F 1 ) ( L − b ) 5 ] ii) Type 2 loading condition:
BC 1: @ x=0, Y(x)=0 0 = 1 E I [ R b 6 < 0 − 0 > 3 + F 1 24 < 0 − c > 4 + F 2 − F 1 120 d < 0 − c > 5 − F 2 24 < 0 − e > 4 − F 2 − F 1 120 d < 0 − e > 5 + C 1 ( 0 ) + C 2 ] 0 = 1 E I [ 0 + 0 + 0 + 0 + 0 + 0 + C 2 ] C 2 = 0 \text{BC 1: @ x=0, Y(x)=0} \\ 0 =\frac{1}{EI}[\frac{R_b}{6}<0-0>^{3} + \frac{F_1}{24}<0-c>^{4} + \frac{F_2-F_1}{120d}<0-c>^{5} - \frac{F_2}{24}<0-e>^{4} - \frac{F_2-F_1}{120d}<0-e>^{5} +\hspace{0.1cm} C_{1}(0) +\hspace{0.1cm} C_{2}] \\0=\frac{1}{EI}[ 0 + 0+ 0 + 0 + 0 + 0 +C_{2}] \\ C_{2}= 0 BC 1: @ x=0, Y(x)=0 0 = E I 1 [ 6 R b < 0 − 0 > 3 + 24 F 1 < 0 − c > 4 + 120 d F 2 − F 1 < 0 − c > 5 − 24 F 2 < 0 − e > 4 − 120 d F 2 − F 1 < 0 − e > 5 + C 1 ( 0 ) + C 2 ] 0 = E I 1 [ 0 + 0 + 0 + 0 + 0 + 0 + C 2 ] C 2 = 0
BC 2: @ x=L, Y(x)=0 0 = 1 E I [ R b 6 < L − 0 > 3 + F 1 24 < L − c > 4 + F 2 − F 1 120 d < L − c > 5 − F 2 24 < L − e > 4 − F 2 − F 1 120 d < L − b > 5 + C 1 ( L ) + C 2 ] 0 = 1 E I [ R b L 3 6 + F 1 ( L − c ) 4 24 + ( F 2 − F 1 ) ( L − c ) 5 120 d − F 2 ( L − e ) 4 24 − ( F 2 − F 1 ) ( L − e ) 5 120 d + C 1 L ] C 1 = − [ R b L 2 6 + F 1 ( L − c ) 4 24 L + ( F 2 − F 1 ) ( L − c ) 5 120 L d − F 2 ( L − e ) 4 24 L − ( F 2 − F 1 ) ( L − e ) 5 120 L d ] \text{BC 2: @ x=L, Y(x)=0} \\ 0 =\frac{1}{EI}[\frac{R_b}{6}<L-0>^{3} + \frac{F_1}{24}<L-c>^{4} + \frac{F_2-F_1}{120d}<L-c>^{5} - \frac{F_2}{24}<L-e>^{4} - \frac{F_2-F_1}{120d}<L-b>^{5} +\hspace{0.1cm} C_{1}(L) +\hspace{0.1cm} C_{2}] \\ 0=\frac{1}{EI}[\frac{R_bL^3}{6} + \frac{F_1(L-c)^4}{24} + \frac{(F_2-F_1)(L-c)^5}{120d} - \frac{F_2(L-e)^4}{24} - \frac{(F_2-F_1)(L-e)^5}{120d} +C_{1}L] \\ C_1 =-[\frac{R_bL^2}{6} + \frac{F_1(L-c)^4}{24L} + \frac{(F_2-F_1)(L-c)^5}{120Ld} - \frac{F_2(L-e)^4}{24L} - \frac{(F_2-F_1)(L-e)^5}{120Ld}] BC 2: @ x=L, Y(x)=0 0 = E I 1 [ 6 R b < L − 0 > 3 + 24 F 1 < L − c > 4 + 120 d F 2 − F 1 < L − c > 5 − 24 F 2 < L − e > 4 − 120 d F 2 − F 1 < L − b > 5 + C 1 ( L ) + C 2 ] 0 = E I 1 [ 6 R b L 3 + 24 F 1 ( L − c ) 4 + 120 d ( F 2 − F 1 ) ( L − c ) 5 − 24 F 2 ( L − e ) 4 − 120 d ( F 2 − F 1 ) ( L − e ) 5 + C 1 L ] C 1 = − [ 6 R b L 2 + 24 L F 1 ( L − c ) 4 + 120 L d ( F 2 − F 1 ) ( L − c ) 5 − 24 L F 2 ( L − e ) 4 − 120 L d ( F 2 − F 1 ) ( L − e ) 5 ] So you final Deflection equations are: i) Type 1 loading condition:
Y ( x ) = 1 E I [ R a 6 < x − 0 > 3 + F 1 24 < x − a > 4 + F 2 − F 1 120 d < x − a > 5 − F 2 24 < x − b > 4 − F 2 − F 1 120 d < x − b > 5 + C 1 x ] where C 1 = − [ R a L 2 6 + F 1 ( L − a ) 4 24 L + ( F 2 − F 1 ) ( L − a ) 5 120 L d − F 2 ( L − b ) 4 24 L − ( F 2 − F 1 ) ( L − b ) 5 120 L d ] Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{F_1}{24}<x-a>^{4} + \frac{F_2-F_1}{120d}<x-a>^{5} - \frac{F_2}{24}<x-b>^{4} - \frac{F_2-F_1}{120d}<x-b>^{5} + \hspace{0.1cm}C_1x] \\ \text{where} \hspace{0.3cm} C_1 =-[\frac{R_aL^2}{6} + \frac{F_1(L-a)^4}{24L} + \frac{(F_2-F_1)(L-a)^5}{120Ld} - \frac{F_2(L-b)^4}{24L} - \frac{(F_2-F_1)(L-b)^5}{120Ld}] Y ( x ) = E I 1 [ 6 R a < x − 0 > 3 + 24 F 1 < x − a > 4 + 120 d F 2 − F 1 < x − a > 5 − 24 F 2 < x − b > 4 − 120 d F 2 − F 1 < x − b > 5 + C 1 x ] where C 1 = − [ 6 R a L 2 + 24 L F 1 ( L − a ) 4 + 120 L d ( F 2 − F 1 ) ( L − a ) 5 − 24 L F 2 ( L − b ) 4 − 120 L d ( F 2 − F 1 ) ( L − b ) 5 ] ii) Type 2 loading condition:
Y ( x ) = 1 E I [ R b 6 < x − 0 > 3 + F 1 24 < x − c > 4 + F 2 − F 1 120 d < x − c > 5 − F 2 24 < x − e > 4 − F 2 − F 1 120 d < x − e > 5 + C 1 x ] where C 1 = − [ R b L 2 6 + F 1 ( L − c ) 4 24 L + ( F 2 − F 1 ) ( L − c ) 5 120 L d − F 2 ( L − e ) 4 24 L − ( F 2 − F 1 ) ( L − e ) 5 120 L d ] Y(x) =\frac{1}{EI}[ \frac{R_b}{6}<x-0>^{3} + \frac{F_1}{24}<x-c>^{4} + \frac{F_2-F_1}{120d}<x-c>^{5} - \frac{F_2}{24}<x-e>^{4} - \frac{F_2-F_1}{120d}<x-e>^{5} + \hspace{0.1cm}C_1x] \\ \text{where} \hspace{0.3cm} C_1 =-[\frac{R_bL^2}{6} + \frac{F_1(L-c)^4}{24L} + \frac{(F_2-F_1)(L-c)^5}{120Ld} - \frac{F_2(L-e)^4}{24L} - \frac{(F_2-F_1)(L-e)^5}{120Ld}] Y ( x ) = E I 1 [ 6 R b < x − 0 > 3 + 24 F 1 < x − c > 4 + 120 d F 2 − F 1 < x − c > 5 − 24 F 2 < x − e > 4 − 120 d F 2 − F 1 < x − e > 5 + C 1 x ] where C 1 = − [ 6 R b L 2 + 24 L F 1 ( L − c ) 4 + 120 L d ( F 2 − F 1 ) ( L − c ) 5 − 24 L F 2 ( L − e ) 4 − 120 L d ( F 2 − F 1 ) ( L − e ) 5 ] You are now ready to plot the curves to determine the overall shear force, bending moment and deflection of a simply supported beam with a trapezoidal load!