Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🎖️
Bounty Program
🌵
CalcTree


Project Name
:Enter Name


Status
:Not Started


Owner
:Your Name

Using this calculator you can visualise the shear force, bending moment and deflection of a cantilever beam when a UDL of length 'c' is applied at a distance 'a' from the wall support.

Calculator

Applied force is negative (-) in the downwards direction.

Inputs

Geometry and Loading
  1. Length of beam,
    
    L
    :10.00m
    
  1. Distance from wall to start of UDL,
    
    a
    :4.00m
    
  1. Distance from wall to end of UDL,
    
    b
    :8.00m
    
  1. Magnitude of UDL,
    
    F
    :-5.00kN/m
    
Beam Properties
  1. Elastic Modulus,
    
    E
    :200.00GPa
    
  1. Second moment of Inertia,
    
    I
    :142,000,000.00mm4
    
Cantilever beam with UDL

Free body diagram


Outputs

  1. 
    
    Max Shear
    :20.00kN
    
  1. 
    
    Max Deflection
    :-103.286mm
    
  1. 
    
    Max Moment
    :-120.00kN m
    

Can’t display the image because of an internal error. Our team is looking at the issue.



Beam Analysis Equations

Using Macaulay's Theorem and the Double Integration Method, we can create the equations for shear force, bending moment and deflection as follows:
  1. Shear Force

V(x)=M<x0>1+V<x0>0+F<xa>1F<xb>1=V<x0>0+F<xa>1F<xb>1V(x) = -M<x-0>^{-1} + V<x-0>^{0} + F<x-a>^{1} - F<x-b>^{1} \\=V<x-0>^{0} + F<x-a>^{1} - F<x-b>^{1}
  1. Bending Moment

M(x)=M<x0>0+V<x0>1+F2<xa>2F2<xb>2M(x) = -M<x-0>^{0} + V<x-0>^{1} + \frac{F}{2}<x-a>^{2} - \frac{F}{2}<x-b>^{2}
  1. Deflection

Y(x)=1EI[M2<x0>2+V6<x0>3+F24<xa>4F24<xb>4]Y(x) =\frac{1}{EI}[ -\frac{M}{2}<x-0>^{2}+\frac{V}{6}<x-0>^{3} + \frac{F}{24}<x-a>^{4} - \\\frac{F}{24}<x-b>^{4}]
Want to know how to derive the equations? Keep reading!

Derivation

Step 1: Find the beam support reactions by using the equilibrium equations.
Cantilever beam with UDL

Free body diagram


Equations for d & W


ΣFy=0V=w\Sigma F_y = 0 \\ V = -w

ΣM0=0M=wd\Sigma M_0 = 0 \\M = -wd
Step 2: Find the shear force

and bending moment

equations by using the table of Macaulay's Singularity Functions on the homepage. Because the load is not applied up to the right end of the beam, there are a few extra steps to consider:
  1. Change the FBD so that the UDL does a wrap-around the beam and stops at the
    
    from the wall on the underside of the beam.
  1. Apply Macaulay's Theorem as normal to get the
    
    and
    
    equations considering all forces and moments along the beam
Free body diagram adjusted for Macaulay's Theorem

❗Note:



V(x)=M<x0>1+V<x0>0+F<xa>1F<xb>1=V<x0>0+F<xa>1F<xb>1V(x) = -M<x-0>^{-1} + V<x-0>^{0} + F<x-a>^{1} - F<x-b>^{1} \\=V<x-0>^{0} + F<x-a>^{1} - F<x-b>^{1}

M(x)=M<x0>0+V<x0>1+F2<xa>2F2<xb>2M(x) = -M<x-0>^{0} + V<x-0>^{1} + \frac{F}{2}<x-a>^{2} - \frac{F}{2}<x-b>^{2}
To find deflection there are a few more steps to consider. We will be doing the Double Integration method to get the Deflection Equation of the beam. These steps are outlined below.
Step 3: Perform the Double Integration Method to find the deflection equation.
  1. Integrate the Bending moment equations once to get the Slope Equation.

θ(x)=1EIM(x)dxθ(x)=1EI[M<x0>1+V2<x0>2+F6<xa>3F6<xb>3+C1]\theta(x) = \frac{1}{EI}\int M(x) \hspace{0.1cm} dx \\ \theta(x) = \frac{1}{EI} [-M<x-0>^{1} + \frac{V}{2}<x-0>^{2} + \frac{F}{6}<x-a>^{3} - \frac{F}{6}<x-b>^{3} +\hspace{0.1cm} C_{1}]
  1. Integrate the Slope Equation to find the Deflection Equation.

Y(x)=1EIθ(x)dxY(x)=1EI[M2<x0>2+V6<x0>3+F24<xa>4F24<xb>4+C1x+C2]Y(x) = \frac{1}{EI}\int \theta(x) \hspace{0.1cm} dx \\ Y(x) =\frac{1}{EI}[ -\frac{M}{2}<x-0>^{2} + \frac{V}{6}<x-0>^{3} + \frac{F}{24}<x-a>^{4} - \frac{F}{24}<x-b>^{4} +\hspace{0.1cm} C_{1}x +\hspace{0.1cm} C_{2}]
  1. Apply the Boundary Conditions to find the constants
    
    and
    
    

BC 1: @ x=0, θ(x)=00=1EI[M<00>1+V2<00>2+F6<0a>3+F6<xa>3+C1]0=1EI[0+0+0+0+C1]C1=0\text{BC 1: @ x=0, $\theta$(x)=0} \\ 0 = \frac{1}{EI} [-M<0-0>^{1} + \frac{V}{2}<0-0>^{2} + \frac{F}{6}<0-a>^{3} + \frac{F}{6}<x-a>^{3} +\hspace{0.1cm} C_{1}] \\0=\frac{1}{EI}[ 0 + 0 + 0 + 0 +C_{1}] \\ C_{1}= 0

BC 2: @ x=0, Y(x)=00=1EI[M2<00>2+V6<00>3+F24<0a>4F24<0b>4+C1(0)+C2]0=1EI[0+0+0+0+C2]C2=0\text{BC 2: @ x=0, Y(x)=0} \\ 0=\frac{1}{EI}[ -\frac{M}{2}<0-0>^{2} + \frac{V}{6}<0-0>^{3} + \frac{F}{24}<0-a>^{4} - \frac{F}{24}<0-b>^{4} +\hspace{0.1cm} C_{1}(0) +\hspace{0.1cm} C_{2}] \\ 0=\frac{1}{EI}[ 0 + 0 + 0 + 0 +C_{2}] \\ C_{2} = 0
  1. Both constants are zero so you final Deflection equation becomes:

Y(x)=1EI[M2<x0>2+V6<x0>3+F24<xa>4F24<xb>4]Y(x) =\frac{1}{EI}[ -\frac{M}{2}<x-0>^{2}+\frac{V}{6}<x-0>^{3} + \frac{F}{24}<x-a>^{4} - \\\frac{F}{24}<x-b>^{4}]
You are now ready to plot the curves to determine the overall shear force, bending moment and deflection of a cantilever beam with a UDL!