Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Mohr's Circle for 2D Stresses's banner

Mohr's Circle for 2D Stresses

Calculation

Inputs



σx
:100MPa



σy
:350MPa



τxy
:500MPa



Angle of Rotation
:60deg


Output



σn
:720.5127018922185MPa



τn
:-141.74682452694748MPa



σ1
:740.3882032022076MPa



σ2
:-290.3882032022076MPa



τmax
:515.3882032022076MPa


Drawing the Mohr's Circle



σave
:225MPa



τmax
:515.3882032022076MPa



Explanation

What is the Mohr's Circle?

The Mohr's Circle is the graphical representation of the stress transformation equations and is useful in visualizing the relationships of the normal and shear stresses inclined at a given angle.

Stress Transformation Equations

There may be times we would like to rotate our stress element to get the stress at a certain angle. The stress transformation equations are used to determine the normal and shear stress inclined at a particular angle.

Normal Stress


σn=σx+σy2+σxσy2cos(2θ)+τxysin(2θ) \sigma_n = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)\

Shear Stress


τn=σxσy2sin(2θ)+τxycos(2θ)\tau_{n} = -\frac{\sigma_x - \sigma_y}{2} \sin(2\theta) + \tau_{xy} \cos(2\theta)


Principal Stresses

The principal stresses are the maximum and minimum normal stresses that occur when the stress element is rotated to the degree that the shear stress is zero.

σ1,2=σx+σy2±(σxσy2)2+τxy2\sigma_1,_2 = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}

τ=(σxσy2)2+τxy2\tau= \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}


References

  1. 08.1 Plane stress transformation by Introductory Engineering Mechanics
  2. Mohr's Circle in Excel by Stephen Kuchnicki

Related Resources

Check out our full library of CalcTree templates here!
  1. 3D Mohr's Circle
  1. Weight to Volume relationships in soils