Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Estados de Vigas de Concreto
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
EM Wave Propagation Calculator
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
CLT Properties Calculator to ANSI/APA PRG 320's banner

CLT Properties Calculator to ANSI/APA PRG 320

This calculator computes geometric and strength properties of CLT panels based on the CLT grade and lay-up selected. Units are in the imperial system. Calculator is for use in the U.S.
All calculations are performed in accordance with ANSI/APA PRG 320-2019, the American National Standards Institute / American Plywood Association Standard for Performance-Rated Cross-Laminated Timber.

Calculation

Inputs

Select CLT grade:


CLT Grade
:E2


List of CLT grades as per ANSI/APA PRG 320


Define CLT lay-up:


No. of ply
:3



tp
:4.125



Outputs

Properties in the major strength direction:

1.5
1650
3825
102
0.53
1980
Properties in the minor strength direction:

1.4
525
165
3.6
0.56
660


Explanation

Cross Laminated Timber (CLT) is a prefabricated engineered wood product that consists of at least three layers of solid-sawn lumber. These adjacent layers are cross-oriented and bonded with a structural adhesive to form a solid wood element. It is used in construction for various purposes including structural supports, floors, and walls.
ANSI/APA PRG 320 refers to out-of-plane bending and shear action as "flatwise", that is the bending and shear produced from transverse (aka perpendicular) loads.
Load perpendicular to the CLT panel producing "flatwise" bending and shear as per ANSI/APA PRG 320

Where:
  1. 
    
    modulus of elasticity of the lamination, in psi, in the CLT major strength direction
  1. 
    
    bending stress of the lamination, in psi, in the CLT major strength direction
  1. 
    
    effective flatwise bending moment of CLT, in Ibf-ft/ft of width, in the CLT major strength direction
  1. 
    
    effective flatwise bending stiffness of the CLT, in Ibf-in.^2 of width, in the CLT major strength direction
  1. 
    
    effective flatwise shear rigidity of CLT, in Ibf/ft of width, in the CLT major strength direction
  1. 
    
    flatwise shear capacity, in Ibf/ft of width, in the CLT major strength direction
  1. 
    
    modulus of elasticity of the lamination, in psi, in the CLT minor strength direction
  1. 
    
    bending stress of the lamination, in psi, in the CLT minor strength direction
  1. 
    
    effective flatwise bending moment of CLT, in Ibf-ft/ft of width, in the CLT minor strength direction
  1. 
    
    effective flatwise bending stiffness of the CLT, in Ibf-in.}^2 /ft of width, in the CLT minor strength direction
  1. 
    
    effective flatwise shear rigidity of CLT, in Ibf/ft of width, in the CLT minor strength direction
  1. 
    
    flatwise shear capacity, in Ibf/ft of width, in the CLT minor strength direction

Code Equations

Below, we'll present the equations used to calculate each key property of the CLT panel, as per ANSI/APA PRG 320.
  1. Flatwise Bending Moment

(FbS)eff,0=(112)0.85Fb,majorSeff,0[X3-1 ASD](FbS)eff,90=(112)Fb,minorSeff,90[X3-2 ASD](F_bS)_{\text{eff},0} = \left( \frac{1}{12} \right) 0.85 F_{b,\text{major}} S_{\text{eff},0} \hspace{1cm} \text{[X3-1 ASD]}\\(F_bS)_{\text{eff},90} = \left( \frac{1}{12} \right) F_{b,\text{minor}} S_{\text{eff},90} \hspace{1cm} \text{[X3-2 ASD]}
  1. Flatwise Bending Stiffness

(EI)eff,f,0=i=1nEib0ti312+i=1nEib0tizi2[X33](EI)eff,f,90=i=2nEib90ti312+i=2nEib90tizi2[X34](EI)_{\text{eff,f,}0} = \sum_{i=1}^{n} E_ib_0 \frac{t_{i}^{3}}{12} + \sum_{i=1}^{n} E_ib_0 t_{i} z_{i}^{2} \hspace{1cm} [X3-3] \\ (EI)_{\text{eff,f,}90} = \sum_{i=2}^{n} E_ib_{90} \frac{t_{i}^{3}}{12} + \sum_{i=2}^{n} E_ib_{90} t_{i} z_{i}^{2} \hspace{1cm}[X3-4]
  1. Flatwise Shear Rigidity

(GA)eff,f,0=(tpt12tn2)2[(t12G1b0)+(i=2n1tiGib0)+(tn2Gnb0)][X35](GA)eff,f,90=(tpt12tn2)2(t12G1b90)+(i=2n1tiGib90)+(tn2Gnb90)[X36](GA)_{\text{eff,f,}0} = \dfrac{(t_{p} - \frac{t_{1}}{2} - \frac{t_{n}}{2})^2}{\left[ \left( \frac{t_{1}}{2G_1b_0} \right) + \left( \sum_{i=2}^{n-1} \frac{t_{i}}{G_i b_0} \right) + \left( \frac{t_{n}}{2G_nb_0} \right) \right]} \hspace{1cm} [X3-5] \\ (GA)_{\text{eff,f,}90} = \dfrac{(t_{p} - \frac{t_{1}}{2} - \frac{t_{n}}{2})^2}{\left( \frac{t_{1}}{2G_1b_{90}} \right) + \left( \sum_{i=2}^{n-1} \frac{t_{i}}{G_ib_{90}} \right) + \left( \frac{t_{n}}{2G_nb_{90}} \right)} \hspace{1cm} [X3-6]
  1. Flatwise (Rolling) Shear Rigidity

Vs,0=2Agross,03Fs,minor[X3-7 ASD]Vs,90=2Agross,903Fs,major[X3-8 ASD]V_{s,0} = \frac{2 A_{\text{gross,0}}}{3} F_{s,\text{minor}} \hspace{1cm}\text{[X3-7 ASD]} \\V_{s,90} = \frac{2 A_{\text{gross,90}}}{3} F_{s,\text{major}} \hspace{1cm}\text{[X3-8 ASD]}

Related Rources

  1. Mass Timber Self-weight Calculator
Check out our full library of CalcTree templates here!