This calculator designs timber nail joint connections by checking the timber species and nail group geometry. It checks the capacity of nail joints connecting two or three timber members, subject to applied axial or shear forces and moments.
All calculations are performed in accordance with AS 1720.1-2010.
Calculation
Member dimensions (i.e. width and height) are sufficiently sized to accommodate the nails. Calculator plots the minimum dimensions of the member required, based on the minimum end and edge distances calculated.
Joint Configuration
Define nail properties
Joint type
:Type 1 - Double shear
Load direction
:Parallel to the grain
Extra strengthening measures
:Driven through plywood gussets
Are holes prebored
:Yes
Are nails skewed
:No
Nail diameter
:3.15mm
Nail position
:Side grain
Nail penetration length
:100mm
Nail penetration check
:Too short ❌
Set axis direction:
x axis
:Parallel to the grain
y axis
:Perpendicular to the grain
Define geometry:
Rows
:5
Sx
:65mm
Sx check for spacing
:✅
Minimum Sx
:63.00mm
Minimum end distance
:32mm
Columns
:3
Sy
:35mm
Sy check for spacing
:✅
Minimum Sy
:32mm
Minimum edge distance
:16mm
The plot assumes the x-axis is the axis parallel to the grain.
Can’t display the image because of an internal error. Our team is looking at the issue.
Member Properties
Design Capacity
Qk
is dependent on the condition of the member (for Type 1) and the nail penetration length (for Type 2). The below values are as per Table 4.1 (A), (B) and Table 4.2(A), (B).
Qk1
= capacity for a nail parallel to the grain in member
n
Qk2
= capacity for a nail perpendicular to the grain in member
n
Member #1
Qk1_1
:1135N
Qk2_1
:16N/mm
Member #2
Qk1_2
:1135N
Qk2_2
:16N/mm
Member #3
Qk1_3
:1135N
Qk2_3
:16N/mm
❗Capacity for Member #3 is only applicable for joints in double shear
Timber nail connections are widely used in both residential and commercial construction, offering versatility and ease of installation. The method is favored for its cost-effectiveness, speed and reliability, making it a popular choice for framing, truss assembly, and other applications in timber structures.
Timber framing for residential complex (Source: YourHome)
Nail connections rely on the simplicity and effectiveness of nails driven into wood to create secure bonds between different components, such as beams, joists, and columns. The process involves strategically placing nails to ensure structural integrity and stability while considering factors like load-bearing capacity and resistance to forces such as tension and shear.
Nails driven into the timber spread the fibres apart. Generally, nails don't cut or break the timber fibres, so the strength of the member is not compromised. The tensile strength of the timber member therefore remains unaffected by the nailed connection.
Common timber nail connections (Source: MTC Solutions)
Code Parameters and Equations
AS 1720.1 categorises a connection type into either "type 1" or "type 2" for the purpose of design. The code also prescribes minimum dimensions for the nail set-out and for the timber thickness.