Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
EM Wave Propagation Calculator
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Dunkerley’s Method for Beam Vibration Calculator's banner
/custom-emojis/emojis/steel-beam.png

Dunkerley’s Method for Beam Vibration Calculator

This template uses Dunkerley's method to approximate the natural frequency of a system by considering the natural frequencies of its component parts.

Calculation

Inputs



f1
:100.0Hz



f2
:90.0Hz


Output



f
:66.9Hz


1f2=1f12+1f22\dfrac{1}{f^2} = \dfrac{1}{f_1^2}+ \dfrac{1}{f_2^2}
Where:
  1. 
    
    is the natural frequency of a beam without added mass (
    
    )
  1. 
    
    is the natural frequency of a weightless beam with added mass (
    
    )
  1. 
    
    is the approximate natural frequency (
    
    )

Explanation

Dunkerley’s method is an approximation technique that considers the effects of added mass on the natural frequency of a system. It provides a simple yet effective way to estimate the natural frequency of beams and structures.
Dunkerley's method to approximate the fundamental frequency of a beam with a mass M by considering the natural frequency of its component parts.

This template is particularly useful in scenarios such as:
  1. Predicting and avoiding resonant frequencies in mechanical systems and structures
  2. Automotive and aerospace industries for assessing the vibrational characteristics of components
  3. Material science for understanding how different materials behave under vibrational forces

References

  1. Rao, S. S. (2017). Mechanical Vibrations (6th ed.). Pearson.
  1. Inman, D. J. (2013). Engineering Vibration (4th ed.). Pearson.
  1. Meirovitch, L. (2010). Fundamentals of Vibrations. McGraw-Hill Education.

Related Resources

  1. Beam Analysis Calculators
  2. Beam Analysis Tool
  3. Longitudinal Vibration of Rods Calculator
Check out our full library of CalcTree templates here!