Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Beam Analysis Calculator for beam with multiple loads's banner
/custom-emojis/emojis/calculator.png

Beam Analysis Calculator for beam with multiple loads

Using this calculator you can visualise the shear force, bending moment and deflection of either a simple supported beam or cantilever beam with up to 10 loads acting on it!
Sign convention used in this calculator:
  1. Applied force is negative (-) in the downwards direction
  2. Applied moment is positive (+) in the clockwise direction

Calculator

Parameters used in this calculator

Inputs

Beam Information



Beam Type
:Simply Supported

❗Note, for Beam Type enter either 'Cantilever' or 'Simply Supported'


Length of beam (L)
:15.00m



Elastic Modulus (E)
:200.00GPa



Moment of Inertia (I)
:142,000,000.00mm4


Beam Loading

Load Type
Enter Point, Moment, UDL, Triangular or Trapezoidal
Distances
For Point or Moment load types, enter b=0
Point Load
For Point load type, enter F1=F and F2=0
Point Moment


Load_1
:Point




a1
:10.00m



b1
:0.00m



F1_1
:-10.00kN



F2_1
:0.00kN



M0_1
:0.00kN m



Load_2
:UDL




a2
:4.00m



b2
:8.00m



F1_2
:-6.00kN



F2_2
:0.00kN



M0_2
:0.00kN m




Load_3
:Moment




a3
:1.00m



b3
:0.00m



F1_3
:0.00kN



F2_3
:0.00kN



M0_3
:-5.00kN m



Click here for more load entries!

Load Type
Distances
Load (kN)
Moment (kNm)


Load_4
:Triangular




a4
:10.00m



b4
:9.00m



F1_4
:7.00kN



F2_4
:0.00kN



M0_4
:0.00kN m




Load_5
:Trapezoidal




a5
:2.00m



b5
:6.00m



F1_5
:5.00kN



F2_5
:10.00kN



M0_5
:0.00kN m




Load_6
:-




a6
:0.00m



b6
:0.00m



F1_6
:0.00kN



F2_6
:0.00kN



M0_6
:0.00kN m




Load_7
:-




a7
:0.00m



b7
:0.00m



F1_7
:0.00kN



F2_7
:0.00kN



M0_7
:0.00kN m



Load_8
:-




a8
:0.00m



b8
:0.00m



F1_8
:0.00kN



F2_8
:0.00kN



M0_8
:0.00kN m



Load_9
:-




a9
:0.00m



b9
:0.00m



F1_9
:0.00kN



F2_9
:0.00kN



M0_9
:0.00kN m



Load_10
:-



a10
:0.00m



b10
:0.00m



F1_10
:0.00kN



F2_10
:0.00kN



M0_10
:0.00kN m




Outputs



Max Shear
:-112.59kN


Max Moment
:-402.45kN m


Max Deflection
:218.98mm

Can’t display the image because of an internal error. Our team is looking at the issue.


Beam Analysis Equations

For multiple loadings on a single beam, we can use superposition of the

and

equations for each loading to determine the overall Shear Force Diagram (SFD), Bending Moment Diagram (BFD) and Deflection Diagram.
Equations of the individual loading conditions for a simply supported beam and cantilever beam is provided below. Click on the toggle boxes to find the equations you need when combining loads!

Simply Supported Beam

Point Load

Point Moment

❗Note:


  1. Shear Force

V(x)=Ra<x0>0+M0<xa>1=Ra<x0>0V(x) = R_a<x-0>^{0} + M_0<x-a>^{-1}\\=R_a<x-0>^{0}
  1. Bending Moment

M(x)=Ra<x0>1+M0<xa>0M(x) = R_a<x-0>^{1} + M_0<x-a>^{0}
  1. Deflection

Y(x)=1EI[Ra6<x0>3+M02<xa>2+C1x]whereC1=[Ra6L2+M0(La)22L]Y(x) =\frac{1}{EI}[ \frac{R_a}{6}<x-0>^{3} + \frac{M_0}{2}<x-a>^{2} +\hspace{0.1cm} C_{1}x] \\ \text{where}\hspace{0.3cm} C_1 = -[ \frac{R_a}{6}L^{2} + \frac{M_0(L-a)^{2}}{2L}]
See a derivation on this page here!
Simply Supported Beam with Point Moment

Free body diagram


Uniformly Distributed Load (UDL)

Triangular Load

Trapezoidal Load

Cantilever Beam

Point Load

Point Moment

Uniformly Distributed Load (UDL)

Triangular Load

Trapezoidal Load