Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
EM Wave Propagation Calculator
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
3-Phase Power Calculator's banner
/custom-emojis/emojis/transmission-tower.png

3-Phase Power Calculator

Welcome to our 3-Phase Power calculation template! This page will enable you to calculate a power value for real, apparent and reactive power in kW, kVA and kVAR units. You will need to know either the line voltage or phase voltage, the phase current/line current and the power factor. Let's begin!
Figure 1: How industrial and household appliances utilise 3-Phase Power


Calculation

Inputs



V_LL
:415



I
:10ampere



Cos θ (PF)
:0.85


Output



P
:0.610963kW



S
:7.1878kVA



Q
:3.78651968kVAR


Explanation

Three-phase power is a common electrical power transmission method used for high-power applications, such as in power plants, factories, and commercial and residential buildings. In a three-phase system, three alternating current (AC) voltages are generated with a fixed phase difference of 120 degrees between them and are transmitted along three separate conductors. Three-phase systems have several advantages over single-phase systems, including more efficient power transmission, reduced transmission losses, and reduced cost of electrical equipment.


PkW=3VLLIcosϕ1000P_{kW} = \frac {\sqrt{3} \cdot \cdot V_{LL} \cdot I \cdot cos \: \phi}{1000}

SkVA=3VLLI1000S_{kVA} = \frac { \sqrt {3} \cdot V_{LL} \cdot I } {1000}

QkVAR=3VLLIsinϕ1000Q_{kVAR} = \frac {\sqrt{3} \cdot V_{LL} \cdot I \cdot sin \: \phi } {1000}
Where:

PkW=ThreePhaseActive/RealPower(kW)SkVA=ThreePhaseApparentPower(kVA)QkVAR=ThreePhaseReactivePower(kVAR)P_{kW} = Three \: Phase \: Active/Real \: Power \: (kW) \\ S_{kVA} = Three \: Phase \: Apparent \: Power \: (kVA) \\ \: Q_{kVAR} = Three \: Phase \: Reactive \: Power \: (kVAR) \\

VLL=Linetolinevoltage(V)I=Linetolinecurrent(A)Cosϕ=PowerFactorϕ=Phaseangle(degrees)V_{LL} = Line \: to \: line \: voltage \: (V) \\ I = Line \: to \: line \: current \: (A) \\ Cos \: \phi = Power \: Factor \\ \phi = Phase \: angle \: (degrees)

📝 Important note!

Related Resources

Check out our full library of CalcTree templates here!
  1. Generator Fault Current
  2. Transformer Fault Current
  1. Wire Voltage Drop

Check out our library of engineering tools here!