Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
EM Wave Propagation Calculator
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Wire Voltage Drop Calculator to AS/NZS 3008's banner
/custom-emojis/emojis/cables.png

Wire Voltage Drop Calculator to AS/NZS 3008

Welcome to our cable voltage drop calculator! This page operates as both an AC and DC voltage drop calculator and will enable you to calculate the voltage drop across a length of wire using a specified input voltage, rated load current and distance.
Voltage drop due to wires is an important parameter in the design of electrical circuits, especially in high-voltage systems. Controlling and anticipating this voltage drop is essential for building safe and efficient electrical systems.

Calculation

Inputs



L
:5m



I
:2ampere



R, Ω/km
:9



X, Ω/km
:9


Output



Z, Ω/km
:12.7279221



V_DC
:0.18volts



V_AC_1P, V
:0.18volts



V_AC_3P, V
:0.1558845volts


Explanation

Voltage drop is defined as the amount of voltage reduction in an electrical circuit due to resistance. This resistance can be in the form of electrical components such as resistors, inductors or capacitors, but it can also occur due to the electricity carrying wire's internal resistance.
The voltage drop due to the conductor wire's internal resistance can be calculated as follows:

Read more on calculating impedance using resistance and reactanc


DC circuits

ΔVDC=2LIRc1000\Delta V_ {DC} = \frac{ {2LIR_{c}} }{1000}
single-phase AC circuits

ΔV1ϕAC=2LIZc1000\Delta V_ {1\phi -AC} = \frac {2LIZ_c}{{1000}}
For three-phase AC circuits

ΔV3ϕAC=3LIZc1000\Delta V_ {3\phi -AC} = \frac{ \sqrt3LIZ_c} {1000}

Where:

L=Lengthofwire(mm)I=Current(A)Rc=Wireresistance(Ω/km)Zc=Wireimpedance(Ω/km)L = Length \: of \: wire \: (mm) \\I = Current \: (A) \\ R_{c} = Wire \: resistance \: (Ω/km) \\ Z_{c} = Wire \: impedance \: (Ω/km)

Related Resources

Check out our full library of CalcTree templates here!
  1. 3-Phase Power
  2. Arc Flash
  3. Electricity Bill