Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🌵
CalcTree
Bust Common Myths About Java Programming
Loading
/custom-emojis/emojis/calculator.png
Tensile Strength and Capacity Control of the W-Shape Sections According to AISC 360-16
Estados de Vigas de Concreto
Loading
/custom-emojis/emojis/calculator.png
Concrete Cylinder Strength Vs Cube Strength
Loading
/custom-emojis/emojis/calculator.png
Earthquake Design Action Calculation
Sıvılaşma Verileri Tablosu
Loading
/custom-emojis/emojis/rc-beam.png
Concrete Column Designer to AS3600
EM Wave Propagation Calculator
section properties with units
Forward Kinematics of Robotic Arm with 6 Degrees of Freedom
İKSA YAPILARI PROJELENDİRME HİZMET BEDELİ (2024)
GEOTEKNİK RAPOR (EK-B) ASGARİ HİZMET BEDELİ (2024)
ZEMİN İYİLEŞTİRME/DERİN TEMEL PROJELENDİRME ASGARİ HİZMET BEDELİ (2024) (İMO)
🚀
Projectile motion
Loading
/custom-emojis/emojis/bending-moment.png
Dezi et. al (2010)
🤾
Projectile motion
Right Solid Circular Cone 's banner
/custom-emojis/emojis/calculator.png

Right Solid Circular Cone

This page provides a diagram and functioning calculator to compute the mass moment of inertia for a cone around it's z axis, an axis through the tip, the base and the centre of mass.

Iz axis=13mr2I_{z\ axis} = \frac{1}{3}mr^2

Itip=m(320r2+35h2)I_{tip} =m(\frac{3}{20}r^2+\frac{3}{5}h^2)

The following are the variables for the equations...

  1. I = the moment of inertia (
    
    ).
  2. h = the height of the cone (m).
  1. m = the body's mass (kg).
  1. r = distance between the centroid of the body and the axis, i.e. the radius (m).

Ibase=m(320r2+110h2)I_{base} =m(\frac{3}{20}r^2+\frac{1}{10}h^2)

Icentre mass=m(320r2+380h2)I_{centre\ mass} =m(\frac{3}{20}r^2+\frac{3}{80}h^2)


Moment of Inertia For A Cone Calculator

Inputs



Mass, m
:15.00kg



Cone height, h
:3.00m



Radius, r
:2.50m


Output



Moment of Inertia, I (general)
:31.25kg m^2


Igeneral=13mr2I_{general} = \frac{1}{3}mr^2


Moment of Inertia, I (tip)
:95.06kg m^2


Itip=m(320r2+35h2)I_{tip} =m(\frac{3}{20}r^2+\frac{3}{5}h^2)


Moment of Inertia, I (base)
:27.56kg m^2


Ibase=m(320r2+110h2)I_{base} =m(\frac{3}{20}r^2+\frac{1}{10}h^2)


Moment of Inertia, I (centre mass)
:19.13kg m^2


Icentre mass=m(320r2+380h2)I_{centre\ mass} =\\m(\frac{3}{20}r^2+\frac{3}{80}h^2)

Related Resources

If you liked this, check out our other articles and resources!
  1. Check out our full calculation template library
  2. More physics calculators and explanations
  3. More Mass Moment of Inertia calculators
  1. Beam analysis tool
  2. Elastic section modulus
  3. Hooke's Law
  4. Moment of Inertia Calculators
  5. Radius of Gyration In Structural Engineering
  6. Slenderness ratio calculator