Loading
/custom-emojis/emojis/contour-map.png
Templates
📚
Articles & Resources
📖
Guides & Support
🎖️
Bounty Program
🌵
CalcTree
Here are the top 30 Integral and Trigonometric Identities, along with the latex syntax and any explanatory text for each identity:

Trigonometric Relationships

  1. Sum-to-Product Formulas

sin(x)+sin(y)=2sin(x+y2)cos(xy2) cos(x)+cos(y)=2cos(x+y2)cos(xy2) sin(x)sin(y)=2sin(xy2)cos(x+y2) cos(x)cos(y)=2sin(x+y2)sin(xy2)\sin(x)+\sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\\ \\ cos(x)+\cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\\ \\sin(x)-\sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \\\ \\cos(x)-\cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)

📝 Note


  1. Difference-to-Product Formulas

sin(x)cos(y)=12(sin(x+y)+sin(xy)) cos(x)sin(y)=12(sin(x+y)sin(xy)) cos(x)cos(y)=12(cos(x+y)+cos(xy)) sin(x)sin(y)=12(cos(x+y)cos(xy))\sin(x)\cos(y) = \frac{1}{2}\left(\sin(x+y)+\sin(x-y)\right) \\\ \\cos(x)\sin(y) = \frac{1}{2}\left(\sin(x+y)-\sin(x-y)\right) \\\ \\cos(x)\cos(y) = \frac{1}{2}\left(\cos(x+y)+\cos(x-y)\right) \\\ \\sin(x)\sin(y) = \frac{1}{2}\left(\cos(x+y)-\cos(x-y)\right)

📝 Note


  1. Double Angle Formulas

sin2θ=2sin(θ)cos(θ)cos2θ=cos2θsin2θtan2θ=2tanθ1tan2θ\sin 2\theta = 2\sin (\theta)\cos(\theta) \\ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \\ \tan 2\theta = \frac {2\tan\theta} {1-\tan^2 \theta}

Pythagorean Identities


sin2(x)+cos2(x)=1sin2(x)=1cos2(x)cos2(x)=1sin2(x) 1+tan2(x)=sec2(x)1+cot2(x)=csc2(x)\sin^2(x) + \cos^2(x) = 1 \\ \sin^2(x) = 1-\cos^2(x) \\ \cos^2(x) = 1- \sin^2(x) \\\ \\ 1+ \tan^2 (x) = \sec ^2 (x) \\ 1 + \cot ^2 (x) = \csc ^2 (x)

  1. Cofunction Identity

sin(π/2x)=cos(x) cos(π/2x)=sin(x)\sin(\pi/2 - x) = \cos(x) \\\ \\cos(\pi/2 - x) = \sin(x)
These identities are used to convert between sine and cosine in situations where one is more convenient to use.

  1. Reciprocal Identity

sec(x)=1sin(x) csc(x)=1cos(x)\sec (x) = \frac{1}{\sin(x)} \\\ \\ \csc(x) = \frac{1}{\cos(x)}
These identities are used to simplify expressions and to find the inverse trigonometric functions.

  1. Quotient Identity

tan(x)=sin(x)cos(x) cot(x)=cos(x)sin(x)\tan(x) = \frac{\sin(x)}{\cos(x)} \\\ \\cot(x) = \frac{\cos(x)}{\sin(x)}

📝 Note


  1. Fundamental Integrals

dx=x+C exdx=ex+C xndx=xn+1n+1+C axdx=axln(a)+C eaxdx=eaxa+C 1x=lnx+C\int dx = x+C \\\ \\ \int e^x dx = e^x + C \\\ \\ \int x^n dx = \frac {x^{n+1}}{n+1} + C \\\ \\ \int a^x dx = \frac{a^x}{\ln(a)} + C\\\ \\ \int e^{ax} dx = \frac {e^{ax}} {a} + C \\\ \\ \int \frac{1}{x} = \ln |x| + C

Trigonometric Integral relationships


sin(x)dx=cos(x)+Ccos(x)dx=sin(x)+Ctan(x)dx=lnsec(x)+C=lncos(x)+C sec(x)dx=ln(secx+tanx)+Ccsc(x)dx=lncsc(x)+cot(x)+Ccot(x)dx=lnsin(x)+Ccsc(x)cot(x)dx=csc(x)+C sec2(x)dx=tan(x)+Ccsc2(x)dx=cot(x)+Ccot2(x)dx=cot(x)x+Cdx 11x2dx=sin1(x)+C 1a2x2dx=1asin1(xa)+C1a2+x2dx=tan1(xa)+C\int\sin(x) \: dx = -\cos(x) + C \\ \int \cos (x) \: dx = \sin (x) + C \\ \int \tan (x) \: dx = \ln |\sec (x)| + C = -\ln|cos(x)| + C \\\ \\ \int\sec(x) \:dx = \ln |(\sec x + \tan x )| + C \\ \int \csc(x) dx = -\ln | \csc (x) + \cot (x) | + C \\ \int \cot (x) dx = \ln | \sin (x) | + C \\ \int \csc(x) \cot(x) \: dx = -\csc (x) + C\\\ \\ \int\sec^2(x) \: dx = \tan(x) + C \\ \int\csc^2(x) \: dx = -\cot(x) + C \\ \int cot^2(x) dx = -\cot(x) -x + C \: dx \\\ \\ \int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + C \\\ \int\frac{1}{\sqrt{a^2-x^2}}dx = \frac{1}{a}\sin^{-1}(\frac{x}{a}) + C \\ \int\frac{1}{\sqrt{a^2 + x^2}}dx = \tan^{-1}(\frac{x}{a}) + C

Trigonometric Integral relationships


Even More Relationships!

  1. Constant Multiple Rule:

kf(x)dx=kf(x)dx\int kf\: (x) \: dx = k \int f(x) \: dx \\
📝 Note!
K is a constant

  1. Sum Rule

(f(x)+g(x))dx=f(x)dx+g(x)dx\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx

  1. Difference Rule

(f(x)g(x))dx=f(x)dxg(x)dx\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx

  1. Power Rule

xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C

  1. Logarithmic Rule

1xdx=lnx+C\int \frac{1}{x} dx = \ln|x| + C

  1. Exponential Rule

exdx=ex+C\int e^x dx = e^x + C

  1. Integral of constant raised to a variable

axdx=axln(a)+C\int a^x dx = \frac{a^x}{ln(a)} + C
📝 Note!
a>0, a!=1


Other Hyperbolic Trigonometric Relationships


sinhx=exex2coshx=ex+ex2tanhx=sinhxcoshxcothx=coshxsinhxcschx=1sinhx\sinh x = \frac{e^x - e^{-x}}{2}\\\cosh x = \frac{e^x + e^{-x}}{2} \\ \tanh x = \frac{\sinh x}{\cosh x} \\\coth x = \frac{\cosh x}{\sinh x} \\ \text{csch}\: x = \frac{1}{\sinh x}

Even more integrals:

  1. Integration by Parts

udv=uvvdu\int udv = uv - \int vdu
📝 Note!

  1. For Trigonometric Substitution:

Let x=asin(θ),or x=atan(θ),or x=asec(θ)Let \ x = a \: sin(θ), \\ or \ x = a \: tan(θ), \\ or \ x = a \: sec(θ)
Then use trigonometric identities to integrate.

  1. Improper Integral:

af(x)dx=limbabf(x)dx\int_a^{\infty} f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx

  1. Beta Function:

01xm1(1x)n1dx=B(m,n)\int_0^1 x^{m-1} (1-x)^{n-1} dx = B(m,n)

📝 Note

  1. In physics, the beta function is used to compute and represent the scatter amplitude of a quantum hadro-dynamic concept known as Regge trajectory
  2. Used in calculus applications
  1. The beta function can also be used to evaluate the cumulative distribution function of a beta distribution.

  1. Gamma Function:

0xm1exdx=Γ(m)\int_0^{\infty} x^{m-1} e^{-x} dx = \Gamma(m)

📝 Note


  1. Elliptic Integral:

0aa2x2dx=a22sin1(xa)+x2a2x2\int_{0}^{a} \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \sin^{-1}(\frac{x}{a}) + \frac{x}{2} \sqrt{a^2 - x^2}

📝 Note



CalcTree

CalcTree, the app you're reading this one is a calculation management platform. You can sign-up and build hosted, shareable web apps (complete with an API and a web publishing module) with tools like Python and Spreadsheets. Learn more here!