Here are the top 30 Integral and Trigonometric Identities, along with the latex syntax and any explanatory text for each identity:
Trigonometric Relationships Sum-to-Product Formulas
sin ( x ) + sin ( y ) = 2 sin ( x + y 2 ) cos ( x − y 2 ) c o s ( x ) + cos ( y ) = 2 cos ( x + y 2 ) cos ( x − y 2 ) s i n ( x ) − sin ( y ) = 2 sin ( x − y 2 ) cos ( x + y 2 ) c o s ( x ) − cos ( y ) = − 2 sin ( x + y 2 ) sin ( x − y 2 ) \sin(x)+\sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\\ \\ cos(x)+\cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\\ \\sin(x)-\sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \\\ \\cos(x)-\cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) sin ( x ) + sin ( y ) = 2 sin ( 2 x + y ) cos ( 2 x − y ) cos ( x ) + cos ( y ) = 2 cos ( 2 x + y ) cos ( 2 x − y ) s in ( x ) − sin ( y ) = 2 sin ( 2 x − y ) cos ( 2 x + y ) cos ( x ) − cos ( y ) = − 2 sin ( 2 x + y ) sin ( 2 x − y ) Difference-to-Product Formulas
sin ( x ) cos ( y ) = 1 2 ( sin ( x + y ) + sin ( x − y ) ) c o s ( x ) sin ( y ) = 1 2 ( sin ( x + y ) − sin ( x − y ) ) c o s ( x ) cos ( y ) = 1 2 ( cos ( x + y ) + cos ( x − y ) ) s i n ( x ) sin ( y ) = 1 2 ( cos ( x + y ) − cos ( x − y ) ) \sin(x)\cos(y) = \frac{1}{2}\left(\sin(x+y)+\sin(x-y)\right) \\\ \\cos(x)\sin(y) = \frac{1}{2}\left(\sin(x+y)-\sin(x-y)\right) \\\ \\cos(x)\cos(y) = \frac{1}{2}\left(\cos(x+y)+\cos(x-y)\right) \\\ \\sin(x)\sin(y) = \frac{1}{2}\left(\cos(x+y)-\cos(x-y)\right) sin ( x ) cos ( y ) = 2 1 ( sin ( x + y ) + sin ( x − y ) ) cos ( x ) sin ( y ) = 2 1 ( sin ( x + y ) − sin ( x − y ) ) cos ( x ) cos ( y ) = 2 1 ( cos ( x + y ) + cos ( x − y ) ) s in ( x ) sin ( y ) = 2 1 ( cos ( x + y ) − cos ( x − y ) ) Double Angle Formulas
sin 2 θ = 2 sin ( θ ) cos ( θ ) cos 2 θ = cos 2 θ − sin 2 θ tan 2 θ = 2 tan θ 1 − tan 2 θ \sin 2\theta = 2\sin (\theta)\cos(\theta) \\ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \\ \tan 2\theta = \frac {2\tan\theta} {1-\tan^2 \theta} sin 2 θ = 2 sin ( θ ) cos ( θ ) cos 2 θ = cos 2 θ − sin 2 θ tan 2 θ = 1 − t a n 2 θ 2 t a n θ Pythagorean Identities
sin 2 ( x ) + cos 2 ( x ) = 1 sin 2 ( x ) = 1 − cos 2 ( x ) cos 2 ( x ) = 1 − sin 2 ( x ) 1 + tan 2 ( x ) = sec 2 ( x ) 1 + cot 2 ( x ) = csc 2 ( x ) \sin^2(x) + \cos^2(x) = 1 \\ \sin^2(x) = 1-\cos^2(x) \\ \cos^2(x) = 1- \sin^2(x) \\\ \\ 1+ \tan^2 (x) = \sec ^2 (x) \\ 1 + \cot ^2 (x) = \csc ^2 (x) sin 2 ( x ) + cos 2 ( x ) = 1 sin 2 ( x ) = 1 − cos 2 ( x ) cos 2 ( x ) = 1 − sin 2 ( x ) 1 + tan 2 ( x ) = sec 2 ( x ) 1 + cot 2 ( x ) = csc 2 ( x ) Cofunction Identity
sin ( π / 2 − x ) = cos ( x ) c o s ( π / 2 − x ) = sin ( x ) \sin(\pi/2 - x) = \cos(x) \\\ \\cos(\pi/2 - x) = \sin(x) sin ( π /2 − x ) = cos ( x ) cos ( π /2 − x ) = sin ( x ) These identities are used to convert between sine and cosine in situations where one is more convenient to use.
Reciprocal Identity
sec ( x ) = 1 sin ( x ) csc ( x ) = 1 cos ( x ) \sec (x) = \frac{1}{\sin(x)} \\\ \\ \csc(x) = \frac{1}{\cos(x)} sec ( x ) = s i n ( x ) 1 csc ( x ) = c o s ( x ) 1 These identities are used to simplify expressions and to find the inverse trigonometric functions.
Quotient Identity
tan ( x ) = sin ( x ) cos ( x ) c o t ( x ) = cos ( x ) sin ( x ) \tan(x) = \frac{\sin(x)}{\cos(x)} \\\ \\cot(x) = \frac{\cos(x)}{\sin(x)} tan ( x ) = c o s ( x ) s i n ( x ) co t ( x ) = s i n ( x ) c o s ( x ) Fundamental Integrals
∫ d x = x + C ∫ e x d x = e x + C ∫ x n d x = x n + 1 n + 1 + C ∫ a x d x = a x ln ( a ) + C ∫ e a x d x = e a x a + C ∫ 1 x = ln ∣ x ∣ + C \int dx = x+C \\\ \\ \int e^x dx = e^x + C \\\ \\ \int x^n dx = \frac {x^{n+1}}{n+1} + C \\\ \\ \int a^x dx = \frac{a^x}{\ln(a)} + C\\\ \\ \int e^{ax} dx = \frac {e^{ax}} {a} + C \\\ \\ \int \frac{1}{x} = \ln |x| + C ∫ d x = x + C ∫ e x d x = e x + C ∫ x n d x = n + 1 x n + 1 + C ∫ a x d x = l n ( a ) a x + C ∫ e a x d x = a e a x + C ∫ x 1 = ln ∣ x ∣ + C Trigonometric Integral relationships
∫ sin ( x ) d x = − cos ( x ) + C ∫ cos ( x ) d x = sin ( x ) + C ∫ tan ( x ) d x = ln ∣ sec ( x ) ∣ + C = − ln ∣ c o s ( x ) ∣ + C ∫ sec ( x ) d x = ln ∣ ( sec x + tan x ) ∣ + C ∫ csc ( x ) d x = − ln ∣ csc ( x ) + cot ( x ) ∣ + C ∫ cot ( x ) d x = ln ∣ sin ( x ) ∣ + C ∫ csc ( x ) cot ( x ) d x = − csc ( x ) + C ∫ sec 2 ( x ) d x = tan ( x ) + C ∫ csc 2 ( x ) d x = − cot ( x ) + C ∫ c o t 2 ( x ) d x = − cot ( x ) − x + C d x ∫ 1 1 − x 2 d x = sin − 1 ( x ) + C ∫ 1 a 2 − x 2 d x = 1 a sin − 1 ( x a ) + C ∫ 1 a 2 + x 2 d x = tan − 1 ( x a ) + C \int\sin(x) \: dx = -\cos(x) + C \\ \int \cos (x) \: dx = \sin (x) + C \\ \int \tan (x) \: dx = \ln |\sec (x)| + C = -\ln|cos(x)| + C \\\ \\ \int\sec(x) \:dx = \ln |(\sec x + \tan x )| + C \\ \int \csc(x) dx = -\ln | \csc (x) + \cot (x) | + C \\ \int \cot (x) dx = \ln | \sin (x) | + C \\ \int \csc(x) \cot(x) \: dx = -\csc (x) + C\\\ \\ \int\sec^2(x) \: dx = \tan(x) + C \\ \int\csc^2(x) \: dx = -\cot(x) + C \\ \int cot^2(x) dx = -\cot(x) -x + C \: dx \\\ \\ \int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + C \\\ \int\frac{1}{\sqrt{a^2-x^2}}dx = \frac{1}{a}\sin^{-1}(\frac{x}{a}) + C \\ \int\frac{1}{\sqrt{a^2 + x^2}}dx = \tan^{-1}(\frac{x}{a}) + C ∫ sin ( x ) d x = − cos ( x ) + C ∫ cos ( x ) d x = sin ( x ) + C ∫ tan ( x ) d x = ln ∣ sec ( x ) ∣ + C = − ln ∣ cos ( x ) ∣ + C ∫ sec ( x ) d x = ln ∣ ( sec x + tan x ) ∣ + C ∫ csc ( x ) d x = − ln ∣ csc ( x ) + cot ( x ) ∣ + C ∫ cot ( x ) d x = ln ∣ sin ( x ) ∣ + C ∫ csc ( x ) cot ( x ) d x = − csc ( x ) + C ∫ sec 2 ( x ) d x = tan ( x ) + C ∫ csc 2 ( x ) d x = − cot ( x ) + C ∫ co t 2 ( x ) d x = − cot ( x ) − x + C d x ∫ 1 − x 2 1 d x = sin − 1 ( x ) + C ∫ a 2 − x 2 1 d x = a 1 sin − 1 ( a x ) + C ∫ a 2 + x 2 1 d x = tan − 1 ( a x ) + C Trigonometric Integral relationships
Even More Relationships! Constant Multiple Rule:
∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf\: (x) \: dx = k \int f(x) \: dx \\ ∫ k f ( x ) d x = k ∫ f ( x ) d x Sum Rule
∫ ( f ( x ) + g ( x ) ) d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx ∫ ( f ( x ) + g ( x )) d x = ∫ f ( x ) d x + ∫ g ( x ) d x Difference Rule
∫ ( f ( x ) − g ( x ) ) d x = ∫ f ( x ) d x − ∫ g ( x ) d x \int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx ∫ ( f ( x ) − g ( x )) d x = ∫ f ( x ) d x − ∫ g ( x ) d x Power Rule
∫ x n d x = x n + 1 n + 1 + C \int x^n dx = \frac{x^{n+1}}{n+1} + C ∫ x n d x = n + 1 x n + 1 + C Logarithmic Rule
∫ 1 x d x = ln ∣ x ∣ + C \int \frac{1}{x} dx = \ln|x| + C ∫ x 1 d x = ln ∣ x ∣ + C Exponential Rule
∫ e x d x = e x + C \int e^x dx = e^x + C ∫ e x d x = e x + C Integral of constant raised to a variable
∫ a x d x = a x l n ( a ) + C \int a^x dx = \frac{a^x}{ln(a)} + C ∫ a x d x = l n ( a ) a x + C Other Hyperbolic Trigonometric Relationships
sinh x = e x − e − x 2 cosh x = e x + e − x 2 tanh x = sinh x cosh x coth x = cosh x sinh x csch x = 1 sinh x \sinh x = \frac{e^x - e^{-x}}{2}\\\cosh x = \frac{e^x + e^{-x}}{2} \\ \tanh x = \frac{\sinh x}{\cosh x} \\\coth x = \frac{\cosh x}{\sinh x} \\ \text{csch}\: x = \frac{1}{\sinh x} sinh x = 2 e x − e − x cosh x = 2 e x + e − x tanh x = c o s h x s i n h x coth x = s i n h x c o s h x csch x = s i n h x 1 Even more integrals: Integration by Parts
∫ u d v = u v − ∫ v d u \int udv = uv - \int vdu ∫ u d v = uv − ∫ v d u For Trigonometric Substitution:
L e t x = a s i n ( θ ) , o r x = a t a n ( θ ) , o r x = a s e c ( θ ) Let \ x = a \: sin(θ), \\ or \ x = a \: tan(θ), \\ or \ x = a \: sec(θ) L e t x = a s in ( θ ) , or x = a t an ( θ ) , or x = a sec ( θ ) Then use trigonometric identities to integrate.
Improper Integral:
∫ a ∞ f ( x ) d x = lim b → ∞ ∫ a b f ( x ) d x \int_a^{\infty} f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx ∫ a ∞ f ( x ) d x = lim b → ∞ ∫ a b f ( x ) d x Beta Function:
∫ 0 1 x m − 1 ( 1 − x ) n − 1 d x = B ( m , n ) \int_0^1 x^{m-1} (1-x)^{n-1} dx = B(m,n) ∫ 0 1 x m − 1 ( 1 − x ) n − 1 d x = B ( m , n ) In physics, the beta function is used to compute and represent the scatter amplitude of a quantum hadro-dynamic concept known as Regge trajectory Used in calculus applications The beta function can also be used to evaluate the cumulative distribution function of a beta distribution. Gamma Function:
∫ 0 ∞ x m − 1 e − x d x = Γ ( m ) \int_0^{\infty} x^{m-1} e^{-x} dx = \Gamma(m) ∫ 0 ∞ x m − 1 e − x d x = Γ ( m ) Elliptic Integral:
∫ 0 a a 2 − x 2 d x = a 2 2 sin − 1 ( x a ) + x 2 a 2 − x 2 \int_{0}^{a} \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \sin^{-1}(\frac{x}{a}) + \frac{x}{2} \sqrt{a^2 - x^2} ∫ 0 a a 2 − x 2 d x = 2 a 2 sin − 1 ( a x ) + 2 x a 2 − x 2 CalcTree CalcTree , the app you're reading this one is a calculation management platform. You can sign-up and build hosted, shareable web apps (complete with an API and a web publishing module) with tools like Python and Spreadsheets. Learn more here !